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PREFACE

Tuis Memorandum is the result of a study carried out at RAND dur-
ing the summer of 1965. The objective was two-fold: to assess the ef-
ficacy of the theory existing at that time, and to brief RAND personnel
on a branch of fluid mechanics which i{s ordimarily overlooked in texts
and graduate curricula. A short series of lectures accompanied the de-
velopment of this Memorandum. The response to this indicated that pub-
lication of thisg Hemorandum would be worthwhile as part of a continuing
RAND program, under U.S. Alr Porce Project RAND, of surveying the state
of the art in aerodynamics.

A framework for the description of three-dimensional flow fields
is 2 requisite for the rational analysis and design of aerodynamic sys-
tems. This Memorandum focuses on one topic in this general area, three-
dimensional boundary layer phenomena, and introduces the concepts and
techniques of this subject to those workers in aerodynamics and fluid
mechanics who are not yet actively engaged in its study.

The author is a professor in the Division of jeronautical Sciences
at the University of California, Berkeley, and a consultant to The RAND

Corporation.
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SUMMARY

The basic concept of a three-dimensional boundary laver is re-
viewed from both physical and mathematical viewpsints. Particular em-
phasis is placed on the various causes of secondary flow, with geodesic
curvature of the surface streamlines of inviscid flow receiving the
most detailed consideration. Various exact solutions for steady, in-
compressible laminar flow are reviewed and a proposal for a fiaite-
difference scheme for arbitrary inviscid flows and surface conditions
is sketched (but not developed and tested). The momesntum-integral
method and other approximaticn schemes are briefly discucsed.

Compressibility effects are discussed qualitatively, and then at-
tention is turned to the stability of laminar fiows and the transition
to turbulence.

The equations for time-averaged turbulent flow are derived and
criticized, both in differential and integral form. We review the two-
dimensional case as a reminder of the essential difficulty of indeter-
minacy, and then critically examine existing empirically-based models
of the three-dimensional turbulent boundary layer. No attempt is made
to review existing methods of computing the development of turbulent
layers.

We conclude with suggestions for further study, most of which seem
as interesting today as they did in 1965.
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SYMBOLS

All symbels are defired where they appear in the text, and many

appear in only one section cf the Memorandum. Some symbols are used

with more than one meaning when their appearances are well separated

in space and context, and confusion seems unlikely.

The symbolg which recur throughout the text are listed below.

Independent Variables and Given Parameters

g T
C
hyshy

"1

gl ™

A

X,Y,2

m,n,r,s

coordinates of an orthogonal mesh covering the body. De-
fined in dimensions of length
distance normal to the body

metric coefficients for € and T} (dimensionless)

geodesic curvature of the coordinate curve, T} = constant,

on the body (length-l)
geodesic curvature of € = constant curve (lengCh-l)

angular velocity of reference frame relative to inertial

space; W, w,, w, are its §-, M-, and {-components

distance from the peint (§,1,() to the axis of reference
frame rotation

a characteristic bedy length

€- and Tl-components of velocity at the wall in irviscid flow
pressure, predetermined by the inviscid flow

potential of a conservative body force

density, assumed constant except in Section XI

abbreviation for p + p(A - w2R2/2)

viscosity, assumed constant except in Section XI

kinematic viscosity, assumed constant except in Section XI

dimensionless, and in the case of z, stretched, versions of
€, T, {, defined on page 1>

dimensionless pressure-gradient parameters defined on pages
13 and 14

e < v, s
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®, ) = dimensioniess coordinate-curvature parameters {proportional

to x,, # respectively), defined on page 14

Dependent Variables

i 1,v,w = & M., {-components of velocity in the beundary layer
{ t’,g’ = dimensionless velocity components £’ = u/U, g’ = v/V
1 . . e st .
G = dimensionless v-velocity in intrinsic coordinate system,
i 6’ = u/u
0 = vorticity vector, with -, M-, and {-components s ?2, 33
T, = surface shear stress (skin friction vector), with 5- and
“-components 11, 12

|
|
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I. INTRODUCTION

When one considers the high degree of three-dimensicnality char-
acteristic of almost all bodies of aerodymamic interest, it seems re- -
markable that the study of three-dimensional boundary layers has gained
so little popularity among aercdynamicists. Physico-chemical or elec-
tromagnetic complications are frequently introduced into studies of two-
dimensional or axisymmetric boundary layers, but geometrical complica-
tione are regarded with great trepidation--if regarded =& all.

The possibility that this attitude not only defied practical real-
ity but also hampered our efforts to understand fluid motions was ini-
tially brought tc my attention by a lecture givenm by Dr. E. A. Eichal-
brenner of 0.N.E.R.A., by Professor M. J. Lighthill's stimulating chap-

ter in Rosenhead's Laminar Boundary Layers, and by a great mmber of

articles in the meteorological literature, especially those describing
attempts tc integrate the '"primitive equation' as a model of large-
scale atmospheric circulations.

The opportunity to investigate the matter further was provided by
RAND, at the suggestion of Dr. Jerome Aroesty. My early impressions,
gained from reading the survey articles listed in the bibliography,
have confirmed my feeling that this topic is worthv of a more broadly
distributed interest among fluid dynamicists.

The objective of this Memorandum is to provide a nonspecialist’s
view of the work of specialists. It is assumed that the reader is sub-
stantially familiar with two-dimensicnal boundary layer theory, and
thus has a feeling for how the magnitude of the velocity vector is re- ‘5
duced through the boundary layer under various sorts of external flows.
Our discussions of three-dimensional boundary layers will focus on how
the direction of the velocity vector varies throuyh the boundary layes,
and hence little attention will te paid to those flows (i.e., axisym-
metric, nonspinning) in which no such variation appears.

1t is in this turning of the velocity vector that we discover the
phenomenological richness of three-dimensional boundary-layer flows.
Freed from the constraint of two-dimensional motion, the fluid seems

to "come alive," seeking more or less tangential detours around
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“obstacles" imposed by the pressure distribution, bringing about a fas-
cinating topology of skin friction lines or “surface streamlines,’ com-
plicating the concept cf separation, and so on. We would hope to
achieve from our study some feeling for how and why these things occur,
perhaps some rules of thumb concerning the effects of body spir or of
inviscid streamline curvature to add to those for the effects of stream-
wise pressure gradient.

1t should be understood at the outset that this Memorandum does
not constitute a review article in the usual semse. Iu the first
place 7 am not persuiially expert in the subject treated, and have de-
rived my information entirely from the writing of others. Topics of
real practical importance, such as the effects of compressibiiity and
of spinning bcdies, have frank:y not been accorded theix deserved
share of attention, partly by ifatert (to focus attention more gharply
on purely geometrical complexities) and partly by the limitations of
time and my acquajintance with the literature.

Thiz Memorandum begins with a largely intuitive review (and exten-
sicen to three-dimeusional flow) of the concept of a boundary layer and
of a properly posed problem of steady flow in boundary-layer theory.
The laminar boundary-layer equaticns are then presented in orthogonal
curvilinear coordinates. For steady, incompressible flow we introduce
the Falkner transformation to eliminate the normal velocity and to
state the tangential momentum equations in a form convenient f£.r all
our future discussions of laminar flow, These discussions begin with
a suggestion for finite-difference solution procedures in various co-
ordinate systems, following the methsd appilied to two-dimensional flows
by Smith and Clutter (1963), but making frequent reference to the
method developed by Raetz (1957} €for three-dimensional flows, Efforts
to depart from the same starting point by series expansion in the sur-
face coordinates are noted. A brief review of exact similar solutions
at stagnation points and for £low over developable surfaces follows.

Next treated are the two principles that have been exploited in

most solutions found to date, nawmely the independence principle for

swept flows and the prevalence priunciple for cases with weak secondary

flow.
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Returning to a more general viewpoint, we give a semi-intuitive
discussion of the causes and nature of secondary flows, and a fairly
extended discussion of the topology of skin friction lines, or "sur-
face stvreamlines,' concluding with a definition and discussioa of
boundary-layer separation in three dimensions.

Momentum-integral approximation methods are discussed next, both
because they lead to some useful results with a considerable savings
in computational effort, and because the difficulties into which they
occasionclly lead us provide useful tests ¢f our intuitive understand-
ing of the boundary layer. The momentum-integral equations are de-
rived directly from the Falkner-transformed equations for laminar flow,
and sre later re-derived more conventionally for turbulent flow, to
provide a check. Velocity profile assumptions and the use of weighted
integral equations are discussed at seme iength.

Compressibility effects are mentioned very briefiy and mostly by
reference in Section XI, as are laminar-flow stability in Section XII
and transition to turbulence in Section XIII. The displacement thick-

ness of a three-dimensional boundary layer is defined in Section XI,
An extended discussion of the incompressible turbulent boundary

layer follows (Section XIV), with the assumption that the reader can
benefit from & brief review of the problem of formulating a momentum-
integral approach for two-dimensional mean flows. It is concluded
that very successful three-parameter models of mean velocity profiles
exist, but that methods for predicting the variation of the preofile
parameters are still essentially deficient. No three-parameter pro-
file model as generally successful as the "wall-wake" model of two-
dimensional flow has yet been found for the three-dimensional case.

Finally, the Memorandum concludes with a number of suggestions
for experiments, calculations, or analyses which appear potentially
fruitful for developing cur powers of description and prediction in
.he areas covered,

The bibliograpy is not complete, but does include all available
recent survey articles. These in turn contain comprehensive biblio-
graphies, from which almost all the individual references givan here

are drawn., One gets the impression from current issues of abstracting



journals that the subject currently receives little attention in com-
parison with more recently glamorous subjects, so that even a 1962 or
1963 bibliography or survey article may be considered reasounably up
to date. The sources which have most influenced the spirit of this
Memorandum are the survey articles by Mager (1964), Head (1961), and
Rotta (1962), the chapters by Lighthill (1963), the report by Raetz
(1957), the paper of Smith and Clutter (1963), the N.L.L. reports of
Timman (1951) and Zaat (1956), the paper of Coles (1956) and the

0.N.E.R.A. publications and other papers by Eichelbrenner and co-

workers.
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il. THE BOUNDARY-LAYER APPROXIMATION IN THREE-DIMENSIONAL FLGW

Survey articles (e.g., Moore {1956) or Mager (i963)) usually dis-

tinguish between beundary-laver flows and boundary-region fiows. 1In

the examples usually cited, the distinction seems to be the following:

(A). In boundary-layer flows we may treat diffusion as pro-

ceeding in only one direction, normal to the wall.

This generalizes the concepts of two-dimensional boundary-layer
theory, in which streamvise diffusion is neglected, to state that dif-
fusion in all directions parallel to the wall is to be neglected.

The physical idea behind this approximation is the thinness of
the boundary layer, as measured along a normal to the wall, compared
to typical streamwise or lateral* distances cf intzrest.

In boundary-region fiows, exempirfied by flow aleryg a coerner or
edge where two walls join abruptly, there is clearly no unique normal
direction at a boundary-layer point close tc the corner, and hence
lateral diffusion must be reinstated. Thece fiows are not treated

here.

(B). 1In boundary-layer flows we may take the pressui: to he
predetermined {on first approximation) by trhe invisci -

flow pattern on the svvface of the given Lacy.

The accuracy of this assumption depends upon (.} the boundary
layer being thin relative to any local radius of cirvature of the body,
and (2) the "displacement effect” of the boundary layer producing only
small perturbations in the local external flow.

Both assumptions A and B may be violated by th~ phenomenon of sep-
aration, if this leads to detachment of a thin shear layer the normal
to which does not nearly coincide with the local norma’® to the wall.

In such a case assumption A would misdirect the dominant diffusive

flux, and the large displacement effect would violate assumption B.

*
We shall often need a word to indicate the direction, parallel
to the wall, but normal to the local velocity vector. For this we
choose 'lateral.”
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II1I. BOUNDARY YALUES AND INITIAL DATA

«wne specification of boundary values for three-dimensional bound-
ary-layer problems exactly paralilels that for two-dimensional flows.
We ordinarily soecify no slip at the well for the tangential compo-
nents of velezity, and may prescribe an arbitrary distribution of nor-
wal vziocity {suction or blowing) on the i:all, sco long as we do not
thereby excessively thicken the boundary layer. (Roughly speaking,
these normal velocities should only be of the order of magnitude of
those arising spontaneously in the boundary layer in the impermeuble
wall case.) Temperature or heat transfer, and concentration or mass
transfer must also be given at the wall.

At "infinity" with respect to a suitably stretched normal distance
variable, the tangential velocity comporents, temperature and composi-
tion cre egnatad to the vaiues of thesz quantities appearirg af the
wall in the inviscid flow solution. The normal velocity is not speci-
fied there, but is derived from thz boundary-layer solution,

As w2 shall discuss in more detail in Section VIII, the boundary
layer in steady flow over a smoothly curved body can be said to be
born at a finite number of isolated nodal points of attachment, some
of which coincide with the attachment points, or “forward stagnation
points,"” of the inviscid flow. In the immediate vicinity of such at-
tachment points can be found a local similar golution of the boundary-
layer equations, which is also an exact solution of the full Navier-
Stokes equations in an infinitesimal neighborhood of the normal at the
stagnation point. These special solutions can be used to establish
initial data for a boundary-layer calculation in an extended region
surrounding the attachment point by assigning values to all unknowns
on a "wall® of normals arising out of a conveniently chosen surface
curve enclosing the attachment point.

If the inviscid flow attachment is along an infinitely sharp lead-
ing edge (or an edge which ia conveniently idzzlized as such) then the
boundary layer is born all along this edge and its initial development
is given by a similar solution .f a Falkner-Skan type. This can be
used to construct initial data on a normal wall closely paralleling



the leading edge. This procedure would also aprly to the degenerate
case of essentially two-dimensional flow in whichh the leading edge is
a cylinder of finite curvature aligned exactly normal to the orcoming
flow. (Think, for example, of a ring wing or axisymmetric engine in-
take at zero incidence.)

Se far, the discussion resembles the corresponding one of two-
dimensional boundary layers. Complications enter, however, when we
consider the effects of three-dimensionality on the domain of depen-
dence downstream of a finite segment of our "imitial data curve.®

Having adopted the assumption that, with boundary conditions
given as above, the boundary layer evolves under the infiuence of a
predetermined pressure field in a region in which diffusion takes place
only along the normal to the wall, we expect to be able to construct
solutious by starting with the given values on the "initial data sur-
fuce™ And "marching” sccadily downstream, sccounti.g a: cach step for
the modification of the velocities, etc., by convection along the lo-
cal velocity vector and diffusion along the local wall normal. An im-
mediately practical question is the following: "Over what area of the
body surface will the solution be completely determined by the given
pressure distribution and inviecid velocity field, and by the solution
already known over a given finite segment of the ‘initial data curve'?"

InFig, 1, AB is the finite segment in question. We assume that
A%, and the entire curve of which it is part, is oriented so that all
boundary-layer particles cross it from one side to the other. This
condition, which physically requires that all flow entering the region
downstream of the "initial data surface' comes from a single 'boundary-
layer birthplace” or attachment region, amounts mathematically to the
requirement that the initial data surface not be tangent to, or crossed
more than once by, a characteristic curve cf ine boundary-layer equa-

%
tione (see Raetz (1957) for mathematical discussions).

*Raetz states an "influence principle®” as follows. "The influ-
ence of the solution at any point is transferred to other points first
by conduction along the straight line paralleling the { axis [the nor-
mal] and passing through that point and then by convection downstream
along all streamlines through that line.'" He calls the dashed lines
through A and B the "outer and inner characteristic envelopes.
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Fig. 1 -- Regions of influence and domain of dependence,

Particles which follow varied downstream trajectories will pass
through any of the normals generating the surface over Ki, according
to their initial distance from the wall.

If we imagine the normals through A and B to be iine sources of
dye, the plan view of the distorting dye sheets in the downstream re-
gion would exhibit the shaded banners of the sketch.

According to our assumption of purely normal diffusion, every
particle in the boundary layer over these shaded banners can become
stained by this dye, whether or not it passed through the normal over
A or B, but no other particles are contaminated. The shaded regions
can then be called the regions of influence of the initial data lines
through A and B. .

Correspondingly, the boundary layer over the unshaded region be-
tween the two banners knows only about the past history of particles
which have passed the initial data surface over the arc KB, and hence
the unshaded area is the area referred to in the underlined question
above. We shall call it the domain of dependence of the solution over
the arc Ki, although in the strict mathematical sense that term should
include also the region upstream of Xﬁ, defined by stream surfaces

which eventually converge at the attachment normal.
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It may appear startling to assert that once we have adopted the
boundary-layer appreximations we have, in effect, no further need of
the fluid which passes outboard of the lines over A and B, in order

to determine the flow in our unshaded region! However, there are but

two ways in which this fluid can make its presence felt. The first is
3 by pressure, but that should be predetermined. The second is by lat-

eral diffusion, but we hzave ignored that for the moment.
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1V. BOUNDARY- LAYER EQUATIONS IN ORTHOGONAL COCRDINATES: IAMINAR FLOW

CONTINULTY AND MOMENTUM EQUATIONS

Following the notation of Mager (1963), to whom the reader is re-
ferred for detailed discussion and references, we introduce general-
ized orthogonal coordinates §, 7|, {. The lines of constant & and 1|
form a network on the bedy surface, and { increases away from the body
along the normal.

The increment of distance between coordinate lines € and § 4 dE
is hl df; corresponding increments are hz di} and h3 d{. PFor thin

boundary layers we can assume that the metric coefficiencs satisfy
hl = h1(§,n), h2 = h2(§,ﬁ), hB = 1

go that { can be interpreted as actual normal distance from the wall,
which lies a2t { = 0.*

The velocity components in the §, N, and { directions are called
u, v, and w. The corresponding surface velocities of the inviscid

flow are

U(g,m), V(E, M), and 0

The boundary-layer assumptions reduce the ccmplex expressions for
viscous stress components in a general orthogonal coordinate system to

the two simple results

= ,du dv
T31 T Ty =B 3¢

*
we do not, of course, have to define [ as the normal distance
itself. Raetz, for example, takes

g = (1- u/U)I/2

after demanding that & and T be so oriented as to render u/U monotonic
in normal distance.
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The continuity equation is simply

gp . 1 [3 9. S =
e T, 13T (hpue) * 3557 (hyve) + 57 (hlhz"p)} 0

The E-component of the momentum equation is

du , 1 du , v du d uv 1 2

st~ bt tw—F 3

€t h 38 " h, 3 T of  hh, 3 T hph, 3S

JL L, w3 2 13 12 (3
hy 38 7 73" T72m 3T T on 38 T p 3C W3¢

The T)-component reads

éx.-,&.ﬂ.;.y_a_.,_wéz_ u? Bh1+ uv th
ot " hy 3§ h, o 3¢ hyh, a1 h;h, of
2

1L, o3 2 _Lén,,_l.a_(.éz)

+h2 on T 2wu 7h, 31~ Foh, M T B g \*3g
The {-component reads
B puu-ww - L a2sl®2 . g
3C | 2 3¢ p 3C

In the §- and T-component equation, the top lines simply give the
components of acceleration, while the terms in the bottom lines repre-
sent (1) a body force derivable from the potential A, (2) a Coriolis
force arising if the body (and hence the coordinate system, is spin-
ning uniformly and steadily with respect to an inertial frame, (3) a
centrifugal force derived from such spinning, (4) the predetermined

preasure force, and (5) the viscous force.
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The local §, ™, and { components of the angular velocity of the
2 2 2 2

, vit = 9" + o + o, i

2 30 Vi h o vty +owg The distance from

the spin axis to the point (§,1,[) is R.
The {-component equation asserts that thes pressure gradient nor-

Sody are Lys Lo and i

mal 2o the wall counterbalances the body force and tlie “forces™ due
to spinning. These forcas are assumed to be sufficiently small so

that throughout the thin boundary layer we may take
z = p(§,T)

with p relatea to cthe veiocities U and V by

w, v, v, w M M
3t " b 3€ " h, oM Wk, 3  Wh, 3E
1 9A w2 3 2 i 3p
+=S2 _ g v -2 g4 = 0
b, 3§ 3° 7 7h, 38 p By 3E
and
V. UV VeV gt Oy 4 W oh,
> " hdE T hon T hph, 3 hh, 88

2
1 2A w9 2. 1 8p _
+ Ry o + 20,0 Thy o RS + ok o 0

Here, Pe designates the surface density of the inviscid flow,

In compressible flows, in which p and p, must be treated as vari-
able, we need also the energy equation, an equation of state, and a
description of the dependence of . and of the thermal conductivity
upon the thermodynamic variables. In what follows immediately, we

shall assume p = P, = constant, and y = constanft,
This assumption focuses attention on effects due to the three-

dimensionality of geometrical constraints, or to Coriolis force. When
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P =10, gravity and centrifugal forces act equally on boundary-layer
and external flow, and hence this assumption rules out qualitatively
interesting phenomena such as {ree convection. We shall comment brieg-
iy on these and other, primarily juantictative, effects of variable den-

sity and viscosity in Section XI.

THE FALKNER TRANSFORMATLON

For discussions of exact self-similar solutions and £or the for-
mulation of systematic wmethods ¢f :2lrculction of iore geairasr bouadary-
layer flows, it is helpful to transform varizlies in some manner which
accounts roughly for the anticipated magnitudes of coundary-layer thick-
ness and velocity components. Many such transformations are available.
We choose, rather arbitrarily, that associated with the name of Falkner.

We call

where L is a characteristic body dimension and v is the kinematic vis-

%%
cosity, Thus

éa_,(m-l\z_ é£=(.2r_t>z__ Q:.=/_.U_.
3E 2 /xL an yL ? 3¢  Yvix

where

Q/
b Y
=]
=]

L}

34nU
m(x,y) -g—z:—};, n(x,y)

Q/’

o

o]
<

*
Laminar Boundary layers, L. Rosenhead, ed., Oxford, 1963, p.
266 (hereafter cited in the text as L.B.L.).

*&
The choice of U rather than V and of E rather than 7 in the nor-
malization of ( implies only that € increases in a mcre-or-less down-
streanm direction, and that U # O except at singular points or lines.

R A R AN Rk O TREINGL 2 W AR AE A i
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Later we shall also want the abbreviations

oinV a(x,v) = 3 InV
3 In % “¥) % 3 in y

r(x,y)

Our dependent variables are written as

u = U(x,y) - £(x,y,2)

which we designate simply u = Uf’. At this point the prime of f does
> hot jmply that f deperds only upon z, but is simply a shorthand. We
shall write out 3f/3x and 3f/dy fully. Similarly, we write

v = V(X,y) S(X,Y,Z) = Vg,

Using the continuity equation, with p = constant, we find, for the

simple case of an impervious wall,

. .l X (U im+l Ve afm = 13 f
w Wk Yoo 1hx'_{\ : >+n}1+( 5= )z xS

* V. _n n 28
+h2y[(s +k>g+ zg -!~yay

where we have introduced our final shorthand notation

d4nh, 3 4n
T Tinx? T y

If u, v, and w are to vanish at z = 0, we gee that boundary con-

ditions on f and g are

£(x,y,0) £/(x,y,0) = g(x,y,0) = g'(x,y,0) = 0
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vhile
fl(an:“’) = g,(x:)':“) = 1

The transformed corponent momentum equations, in which the pres-
sure gradients have been eliminated in favor of inviscid-flow velocity

gradients, etc., become

£ 4 1 (m + 1

Vx 1 (s
h

) ££” + (- £ ) + = Uy hz

A

-24 L) gf
2

1 1

2 w, LV
+(n+ (- gfEn) - (%) = - g -2 ( 32 )x(l -89
’ 1 U

e EE DR Ern) o

and

1

glll +
By

m + _ , - 1+ Vxl (___ %
( 5 + ) fg” + (r +3)(1 - £ += Uy h + A

9 w,L
+o(1 - gh} - g;‘ ﬁ -+ 2(-—%—) x(1 - £7)

CEEE-CDIOEE - o

THE TRANSFORMED EQUATIONS IN "INTRINSIC COORDINATES"

Of the various possible special orfentations of the { and 1 axes,
one of the most interesting is that in which & measures distance down-

stream along the surface streamlines of the inviscid flow. The corre-

*
For convenience, all numbered equations appearing in the text
are collected in the Appendix, p. 89.
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sponding surface coordinates are ralled "intr
choice of coordinate system implies that V =

malization of v, as, fer example,

U(x,y)6 '(x,y,2)

<
n

O.

Ther G (x,y,0) = G*(x,y,=)

insic coordinates."” This

0, and calls for a renor-

The transformed momentum equations become slightly simpler, namely

S ER e e ka3 e e
£ 5 7t ) £+ (- £ # 2 HG + A et

1 1 Y
3 w,L
-(n-i-l)G'f'}-!—ﬁ—G'z-!-Z(-%—)}d;'
1
Cofl (e )L 2 X))
= a{.nl (r £ ¢ ax)+h2 o & 3

and

G”'+-1—-(—‘5‘-—i’—l+n fc”-(“”'")f'c + X ( ){( +x) g

w3L

1

% - - f’z)} + 2(——— x(1 - £%)

R e
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V. EXACT SOLUTICNS, INDEPENDENCE PRINCIPLE, AND CORDITIONS FOR
ABSENCE OF SECONDARY FLOW

STAGNATION POINT SOLUTIONS

Suppose we deal with a "rounded" tody, to which the flow from up-
stream "attaches" at some point P, which we take as the origin of co-
ordinates. In the immediate vicinity of P we can expand the surface

metric coefficients in power series in x and y, e.g.,

oh dh
1 1%
hl(x,y) = hl(0,0) + (E;—) (0,0)x + (3;*} (0,0)y + ...

In particular, we choose a system of ccordinates that is locally rec~

tangular at the origin, so that

h(0,0) = B (0,0) = 1

Since (Bhllax)0 0 and the similar derivatives are finite, we have,
H

in the vicinity of the origin,

Furthermore, if the approaching upstream £low is irrotational, it
can be shcwn that there is an orientation of the x and y axis for which,

in the vicinity of the origin,
U = Ax+ ..., V = By + ...

The desired orientation of the x and y axes is along the principal
directions of curvature of the surface. To be specific, we may take
the x axis along the direction of maximum (convex outward) curvature.
Then we shall have A > 0 and A > B.

1f B is positive, we speak of a nodal attachment point; 1f it is

negative, we designate it as a saddle point of attachment.
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He see chat the given U and V correspond to

All the parameters on the left~hand side of Egs., (1) and (2), in-

cluding the new parameter

B W«
A Uy

are constants. We exclude spinning of the coordinate system, so wy = 0.
We can therefore expect to find similar solutions for £ and g, for

which df/3x = 3g/dx = 0. The governing equations reduce to

s (E+Cg)E +1- £ = 0

g+ (£ +Cg)g” +C(1-g%) = 0

These have been solved numerically by Howarth (1951) for 0 < C < i,
and by Davey (1961) for -1 < C < 0. Extension to compressible flow has
been made by Pouts (1965) for -.5 =C < 1,

The limiting cases C = 0 and C = 1 clearly correspond to the two-
dimensional and axisymmetric stagnation points, respectively.

We have mentioned the practical importance of the nodal solutions
in Section III; tabulation and further discussion are given on pp.

461 to 467 of L.B.L. The saddle-point solutivns are particularly in-
teresting, in that for 0 > C > -0,4294 they propose a locally deter-
mined solution for a region of flow which lies within the domain of
dependence of initial data curves surrounding neighboring ncdal points.
This is not permissible in principle, but may be approximately useful
in practice if the boundary layer has effectively "forgotten' its
initial data by the time it gets close to the saddle point. For
-0.4294 > ¢ > -1, Davey's solutions are particularly intriguing, show-
ing a streamline pattern which changes over from saddle- to node-~like

behavior as z decreases towards zero. The g’ profile shows reverse
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flow near the wall and the flow thus appears in a sense to be separated.
{A careful discussion of separation follows in a later section.) Never-
theless, for C > -1, the displacement thicknees of the boundary layer

is finite and the external flow is still approaching the wall along the
stagnetion streamline. The saddle-~point region for -0.4294 > ¢ > -1

does not lie within the domain of dependence of neighboring nodal points,
and in many waye seems to be a region wetted not directly by the flow

from upstream, but by a very simple type of wake flow.

"DOUBLE" PALKNER-SKAN FLOWS OVEE DEVELOPABLE SURPACES

Developable surfaces can be 'unrolled" inte a plane without wrin-
kling, and hence ouar (§,7) coordinates on such surfaces can be every-

where rectangular. This makes

h, = h, = 1, X = j{ ~ 0 everywhere

. € -1
o~

Now if w, = ¢ (no spinning) and if we can find an orientatio-

3
y axes such that

U = Axy and V = BX'y"

with constant A, B, m, n, r, and 8, and 1f the constants are related

by
r = m-~-1 and 8 = n+1

there will exist simiiar solutions governed by

e BEL e 401 - €73 +§{3—§—2 gf* + n(l - g'f')} - 0

2
and
]
s”’+———m; Lgg” + m- Q1 - £789 +-§-{——“;2 gg” + (n+ 1 - 3'2); =0

P L )

e e
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These have been solved by Yohner and Hansen (1958) for B/A =1
and 2, and for many combinations of m and n. The assumed inviscid
flows are in general quite rotational, 2nd the resulting nonuniformi-
ties of total pressure lead in some cases to "overshooting" f’-pro-
files.

Simi lar solutions of a particularly interesting type are also ob-
tained for arbitrary r and m, providing that n = s = 0. The inviscid

flows are again rotational for r > 0, and the governing equations are

. f“-{--E'—%.—l ££Y + m(1 - f’z) = 0 (The Falkner-Skan equation)

‘3 and

m+ 1
2

g+ fg”’ +r(1 - £'gH = 0

Lizaahiiad iy e dititns tioie

3 ’ These have been solved by Hansen and Herzig (1956) for m = 0 and for

3 integer values of r from 1 to 10. These authors noticed that the equa-
tion for £’ does not contain g’, and that the equation for g’ is linear,
when £/ is considered to be known. Thus solutions for any fixed m,

but with V given by a polynomial in X, can be generated by superposi-
tion. They give examples from the field of turbomachinery and exhibit
some interesting comparisons with experiment. Yohner and Hansen (1958)
also consider this case, and obtain solutions for all combinations ob-

tainable fromm =20, 1, 2, 4, 6, 8, 10 and r =0, 1, 2, 4, 6, 8, 10,

THE INDEPENDENCE PRINCIPLE

The equations treated by Hansen and Herzig (1956) exhibit the spe-
cial feature that f can be found independently of g, and we wmay inquire
as to how generally this can be done.

We examine Eq. (1) and observe that g appears only in terms coun-
taining derivatives with respect to y (including the parameters )\, n,
and s), the curvature parameter #, and the coordinate rotation speed
Wye Thus, in a y-independent flow over a nonspinning body with a de-
velopable surface, £ is independent of g. This is the independence

principie.
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A sample flow would be that over a yawed, infinite cylinder, with
y measured along the generators of the cylinder. Then V is a constant

and the governing equations are

it m+ 1 2 . '2 - (,if_:_ II-Q_f.
£+ (——E—-> £f£° +m(l - £7) = x\{f = f =

]

g”,+ (m 4- 1) fgll

3’ _u 3EN
: x(f:_z_-gf_,r_

ox ox

The equation for f is that solved by Smith and Clutter (1963a)
for a variety of x-wise pressure distributions. The equation for g
Is a second-order linear equation for g’, so that the generation of
solutions for the spanwise flow (g’) for any of Smith and Clutter's
chordwise flows would be a relatively simple matter. A procedure for
doing this numerically is suggested by Lindfield, Pinsent, and Pin-
sent.*

For tie special case m = constant, the equation for f is the
Falkner-Skan equation. The correspounding similar span-wise profiles,
g’, have been found by J. C. Cooke (1950), whose results are tabulated
on p- 471 of L.B.L. (In that table they are called g.) Clearly the

case m = 1 gives the same £ and g as Howarth's stagnation point sclu-
4 g g P

tion for ¢ = 0 (the cylindrical stagnation point),

CONDITIONS FOR ZEROC SECOMNDARY FLOW

With secondary flow defined as flow at right angles to the invis-
cid streamlines, we see that it is given by the function G¢ of Eqs. (3)
and (4). (Recall that these are written for "intrinsic' coordinates,
with € measured along, and 1) normal to, the inviscid streamlines.)

In Eq. (4), every term contains G or a derivative of G, except for
one term, proportioral to A, and another proportional to Wqe We rule
out the second by postulating zero spin. In order to make A vanish,

we first recall that

%
Boundary Layer and Flow Control, G, V. Lachmann, ed., Pergamon
Press, 1961 (hereafter cited in the text as B.L.F.C.).
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d{Ln hl) 1 ahl
ME Smy T bh, 3y B,y

where ®y is the geodesic curvature of the coordinate line of constant
T (in this case the imviscid surface streamline). Geodesic curvature
of a surface curve at a point P is the curvature of the projection of
that curve on the plane tangent to the surface at P. Surface curves
are called geodesics if they have no geodesic curvature and hence ap-
pear locally straight when viewed along 2 normal to the surface at P.
There are an infinite number of geodesic curves through P, each with
its own tangent direction. (A familiar example is given by the 'great
circle” routes over the earth's surface from one city to various others.)
Hence, if w, = 0 and if the inviscid flow surface streamlines are
geodesic curves of the body (as they are, for example, in the Newtonian
hypersonic flow theory) the equation for G’ will contain no term inde-
pendent of G’. Since G’ is subject to homogeneous boundary conditions,

G’ = 0 is the indicated solution and there will be no secondary flow.

SIMIIAR SOLUTIONS FOR SIMPLE SPINMING FLOWS

When w, # 0 it is still possible to find some exact similar bound-
ary-layer solutions, but we owit discussion of these here, for lack of
time and space. The reader is referred particularly to Moore (1956)
and Mager (1963) for excellent reviews.
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VI. CALCULATION SCHEMES FOR AREITRARY BODY SHAPES

In problems in which the right-hand sides of £qs. (3) and (4) do
not vanish, we must deal with partial differential equations in three
independent variables. The usual approach is to replace these equa-
tions by a sequence of ordinary differential equations (with indepen-
dent variable z) by eihher (1) postulating convergent expansions of £°
and G’ as power series in x and y, with coefficiant functions f{j(z),
G{j(z) determined by ordinary differential equations (a generalization
of tne Blasius series approach to two-dimensional prodblems), or (2) ap-
proximating x- and y-derivatives by finite differences, and solving
ordinary differeatial equations at each mesh point (xi, yi), (a gen-
eralization of Smith and Clutter's approach to two-dimensional prob-
lems). 1In either procedure, careful attention must be paid to the con-
cepts of region of influence and domain of dependernce in order to fa-
cilitate the organization of computations and to avoid fundamentsl er-

rors.

SERIES EXPANSIONS

1 am not aware of any published study of the application of the
Blasius series method to general three-dimensioral boundary-layer prob-
lems. There have been several applications to the computation of cross-
flow velocity profiles in cases which are governed by the independence
principle, or which are reduced to quasi-two-dimensional problems by
asgumption of weak cross flow. Some of these are reviewed by Mager.

It appears in some of these works that more terms in the x-expansions
of Blasius are needed to provide satisfactorily accurate cross-flow
profiles than are needed to get good streamwise profiles. It might be
worthwhile to look into the possibilities of applying this method's
self-gimilar nodal attachment point solutions to some body such as an
ellipsoid.

FINITE-DIFFERENCE PROCEDURES

Raetz has been the principal contributor to the technique of di-

rect numerical assault on the three-dimensional laminar boundsry-layer

S Y B N A A AL 2 S04 G KA S AR, .
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equations. He and his co-workers have computed the growth and stability
of laminar boundary layers on airplanes, accounting for compressibility

and distributed suction. We shall not describe the detaily of his meth-
od, but only sketch here a generalization of the approach applied suc-
cessfully to nonsimilar two-dimensional boundary layers by Smith and
Clutter (1962 and 1964). This method employs the boundary-layer equa-
tions in the same transformation as we use here, and seems a little
easier to explain. Given the difficulties of guaranteeing the accura-
cy of finite-difference solutions of partial differential equationms,
it might actually be worthwhile to develop this procedure into a work-
ing alternative to Raetz's method, and to compare the two by applying
them to identical problams.

For two-dimensional or axisymmetric incompressible flow, Smith and

Clutter (1963a) integrated the equation

n'l_m’*'l r's ]2 - _B_f_: llé_f_
£f'4 (——5—— + u) f£f° +m(l - £7) = x (f’ el £ 3%

for specified distributions of m and » versus x. The calculaticn
started with initial data given by the appropriate self-similar soliu-
tion at x = 0, and thereafter approximated f //d3x and 3£f/3x by trall-
ing finite differences. At each discrete value of X s an ordinary dif-
ferential equation for f(z,xn) (in which the values of f, £’ etc. at
X .y appear as variable coefficients) {8 integrated by numerical metn-
oda familiar from the study of similar boundary layers. This consti-
tutes a computationally stable, implicit finite-difference scheme, the
accuracy of which could be controlled by restricting the permissible
values of xnhﬁxn. In thelr second paper, the method is extended to
compressible flow, requiring the simultaneous numerical solution of
two coupled ordinary differential equations at each x-value.

The method suggested here is analogous to the former in that fi-
nite-difference operations would be used for both 3/3x and 3/dy, and
a coupled pair of ordimary differential equations integrated at each
(x,y) mesh point. Because the finite-differencing must not be done in

twe dimensions, even more care and study would probably be required

to insure computational stabllity.
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The firite-difference procedure would be started at an "initial
data surface” surrounding a nodal attachment point or a sharp edge of
attachment, and would probably employ intrinsic surface coordinates
[Eqs. (3) and (4)7.

Onc point which might require special care in the finite-differ-
encing with respect to y is related to the fact that G’ can change sign
in the boundary layer. Since the sign of G’ indicates the local direc-
tion of convection by the secondary flow, and since a fluid particle
carries its initial data downstream, it would probably be necessary to
devise a differencing scheme which uses the data frem the side from
which the fiow approaches the poin® in question. 1f the inviscid flow
is irrotational, we can conveniently let the { = constant curves be
equipctentials, specifically secting § = &(({ = 0)/U®, where Uaa is a
constant reference speed. Then h1 = Um/U and A + n= 0. The determi-
nation of h2 is then directly coupled to tze preliminary task of com-
puting the inviscid flow over the surface. The coordinate curves of
constant N (the inviscid streamlines) might rationally be spaced (and
h2 thereby defined) so that

J.T‘i-u
Uh, dn
0, 2

X

1s independent of i, when the integral is ewaluated along an equipoten~-
tial. This subdivides the inviscid surface flow which "issues from
the attachment point" into equal amounts Sor equal increment of 1.

For later reference we note that in thic coordinate system, # measures
the lateral spreading of inviscid surface streamlines--a three-dimen-
sional effect which can be artificially eliminated by a generalized
Mangler transformation. The combination m + ® measures the surface
divergence of the inviscid velocity field, and vanishes for problzms
in which the inviscid flow is two-dimensional in planes parallel to
the {necessarily plane) wall on which the boundary layer grows. Such

might be the case on the floor of a wind-tunnel turning section.

< .
An important modern reference on this subject is Hess and Smith
(1963).
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WEAK CROSS-FLOW METHODS: PREVALENCE PRINCIPLE

A great mauy approximate calculations of three-dimensional bound-
ary layers take a2dvantage of the fact that the inviscid streamlines
may not deviate too much from surface geodesics, particularly in re-
gions of favorable streamwige pressure gradient, and of course, in the
vicinity of special lines of body symmetry. 1In such cases secondary
flows are weak and have small effect on the primary or streamwise ve-
locity profiles. This is called the “principe de prdvalence! by Eichel-
brenner (1957), and the corresponding theory might be more prosaically
termed the “weak cross-flow thecry.”

In its "zeroth approximation,"” the weak cross-flow theory sets G’
and G equal to zero in Eq. (3), which thus is returned almost to the

form treated by Smith and Clutter (1963a), namely

s (m +31, Neer om0 2y L x (e 3f! o 2
f”+hl 5 +u/ff +h1(1 £°) = 1\fax fax

This equation can be integrated along each inviscid streamline. The
first nonzero estimate of secondary velocities is then obtained from
Eq. (4), in vhich only terms linear in G and its derivatives are re-
tained. This is again an equation which can be integrated along in-

vigcid streamlines by Smith and Clutter's method,

G///+_];_ (E.i..l‘..;. H.) £G/ - (E.:t..’i) £ig! ~ L}.S_ (1 - f’z)

/(“)3L ? X ,BG' » Of
t2{F)x -y - a';(f = %

in which £ and £/ are taken to be the zeroth-order streamwise solu-
tions. The y-derivatives which would appear in the equation for the
next approximation to £ are then approximated by finite differences
conetructed as known functions of x by use of the lower approximations
to £ vnd G on neighboring streamlines (curves of constant y), and once

again w» obtain an equation which can be integrated, in the manner of
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Smith and Clutter, alorg rthe inviscid streamlines. An analogous pro-
cedure can be applied to the momentum-integral equations, to convert
them from partial differentiul equationt in x and y te a sequence of
approximate ordinary differential equations in x. This procedure is

discussed by Eichelbreaner and by Mager {1964).
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VII. VORTICITY OF THREE-DIMENSIONAL BOUNDARY LAYERS

Sometimes we can establish an intuitive grasp of complicated flow
phenomenz by corsidering the sources and history of vorticity, parti-
cularly in the case ¢’ three-dimensional flows. Our building blocks
are the vorticity equation and certain results about sources of vorti-
city at solid walls, and our end product is an understanding of the
origins and development of secondary vorticity and of the pattern of
vortex lines and skin friction lines on the wall.

Prom the vorticity equation we learn that there is only one ini-
tial volume scurce of vorticity in an initially irrotatiomal flow un-
der the action of body forces derivable from a potential. This sourzce
proportional ro grad p X grad p is called baroclinicity by meteorolo-
gists, and it vanishes in a f£luid of constamt density. 1In its absence,
vorticity must initially appear at & boundary of the fluid region.
Once in the fluid, it may be diffused from particle to particle by
viscous torques, the direction of diffusicn being along the normal to
the wall in boundary-layer flcws. Aside from the effects of barocli-
nicity and viscous torques, vorticity is simply carried along with the
moving fluid in such a way as to conserve the flux of 0 + 2v" across

any surface element of fixed material identity. Many implicationms of
this are exhibited in the films *Vorticity" and "Secondary Flow" in

the series sponsored by the National Committee for Fluid Mechanics

Films.

THE SURFACE SOURCE OFf VORTICITY IN INCOMPRESSIBLE FLOW

The diffusive flux of vorticity {1 across a surface in incompres-
sible flow can be described by the tensor v grad 6, in the sense that
the vector -;(v grad ﬁ) givee the rate that vorticity is diffused
across a surfsce normal to the unit vector ;, into the region into
which a points. If the surface happens to be a solid wall, 1t is
natural to speak of -;(v grad ) as the vorticity source strength at
a point on the wall., Under the assumption of zero slip, and with the
assumptions of boundary-layer theory, specifically that hl = hl(g,n),
h2 = h2(§,n), and h3 = 1, we find
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ra = = "oy . = g I
-"n{v grad J)1g=0 n ¥ v curl “]€=0 + n [ag |

From the momentum equation, evaluated at the wall with a no-slip con-

dition, we have

v curl I - % grad P

¢=0

where

o
m

4
p <+ p kA - %l’,zRZ)

The surface source of tangential components of verticity is pre-
determined by the inviscid flow over the body. If we imagine the func-
tion F{E,7) to define a pressure or potential "hill," tangential vor-
ticity is fed into the boundary layer at a rate proportional to the
slope of this hill, and with the sense of rotation which would be taken
by a ball released from rest to start rolling down the hill.

There may also be a surface source of normal vorticity, but this
is not predetermined by the inviscid flow. Like the normal component
of velocity at the outer edge of a boundary layer, or like the surface
values of tangential vorticity, it is part of the response of the
boundary layer to imposed conditions.

If we define "primary" or "lateral" vorticity as that component
of Q which is tangential to the wall and normal to the suriace stream-
lines of inviscid flow, and "secondary" or “streamwise'" vorticity as
that component parallel to the inviscid surface flow, and adopt in~
trinsic surface coordinates in which V = 0, we find that the wall
source strength of primary vorticity 1is -(U/hl) J3U/3€ and that the
wall source strength of secondary vorticity is KIUZ - 2w3U where o
is the geodesic curvature of the inviscid surface streamlines.

0f course, these expressions give only the taugential components

of acceleration of the inviscid flow, along and normal to its surface
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streamlines. 1f the flow were unsteady, there would be a2 wall source
of primary vorticity proportional to -3U/3t.

Lighthill, in L.B.L., pp. 83-84, gives an interesting heuristic
derivation of these results without making reference to the pressure
field, thereby meking clear that, with p = constant, it is the accel-
eration of the inviscid flow that is responsible for the wall sources

of vorticity.

THE SURPACE VORTICITY

What we realiy wish to know in a typical boundary-layer problem
is the distribution of surface vorticity which results from the pre-
determined distributicn of wall sources. According to our discussion
in Secticn I11, we can see thar the surface vorticity at a point
P{€,1,0) must depend upon the sources distributed throughout its "up-
stream-opening®” region of influence. This region is defined by the
normal projection on the wall of all the upstream trajectories of par-
ticles which arrive in the boundary layer over P. Actually, not all
such sources have equal influence on the surface vorticity at P, since
the contribution of a given upstream source is proporticnal to its

/2

strength and to a damping factor (vt:).1 , where t 13 an "average time

of convection" between the source point and P.

SURFACE VORTEX LINES AND SKIN FRICTION LINES

We can imagine the body surface to be covered with a set of curves
everywhere tangent to the surface vorticity vector. Since on a sta-
tionary surface with Zero slip, the Navier-Stokes stress relationship
glves a surface shear stress (skin friction) vector related to the sur-

face vorticity by

we see that the family of skin friction lines, which are everywhere

tangent to :w’ form an orthogonal mesh with the surface vortex lines.
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The skin friction lines are aiso frequently referred to as "sur-
face streamlines,’” since they have, according to the boundary-layer
approximations, a tangent which coincides wiiiu the limiting direction

of boundary-layer streamlines, as { = 0. That /s

v(EMN,0 _ O

Ho &m0 ~ 0

0

but the indeterminacy can be resolved, except at isolated singular

points, by L'Hospital's Rule, to give

T

hm WELD | (V0G0 | 2
o (&m0 Auf30)(8,M,0) 7

[

By use of div Q=0 and ?; = g(ﬁ X ;),80 we can show that
C

so that the wall source of normal vorticity is proportional to the

circulation of the gkin friction field around the point of observa-

tion.
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VIII. TOPOLOGY OF THE SKIN FRICTION LINES

The skin friction lines of a steady flow, like streamlines in the
body of the fluid, can run together or cross one another cnly at ise-
lated singular points, which arise where the vector skin friction van-
ishes so that 12/71 is in turn indeterminate. Such "stagnation points"
of the skin friction field are points of flow attachment or separation

if at such a point the surface divergence

1 (3 N
hh, (ag (7 + 37 (hfz))

is positive or negative, respectively. Such points may aiso be singu-
lar for the surface vorticity field, in which "sources' correspond to
points of attachment of vortex f{ilaments.

The topology of the net of skin friction lines and vortex lines
is dominated by these singular points, and special studies of the flow
neighboring such a point have been made by R. Legendre (1955 and 1956)
and by K. Oswatirsch (1957). We give here a very brief resumé of the
article by Oswatitsch, which contains many perspective drawings which
graatly facilitate understanding.

For a local study near a surface point, we place the origin of
coordinates at that point (€ =7 = { = 0) and adjust the {(arbitrary)
spacing of the &- and M-coordinate surfaces so that hl(0,0,0) =
h2(0,0,0) = 1. Taylor seri:s to the second order in §, M, and { are
postulated for ¢, v, and w. These are indicated by the single vector

equation

*

Many English authors have explored the possibilities of expan-
sion cther than the simple Taylor series in the vicinity of separa-
tion. For a recent example of this line of thought, see Brown {1965).
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W(E7,0 = u(0,0,0) + E 50 j +C i:-
1 am 3¢

+ (gn g—z-g—i+‘qg%g—+ 43 §Z§§>*

where all the derivatives of u are evaluated at the origin (0,0,0).
The wall is stationary and impervious, so ;(§,ﬂ,0) = 0. Thus, at

points on the wall

au .o _ % % _ kL,
3E W T 32 T3> T 32T
0% AN as2 JE3 cm2

Finally, we differentiate the continuity equaticn with respect to (

and find that, on the wall

2 L2 2

3w _ du . 3u v . v
a2 {"‘2 5c T 3o T *13c T m

where Ris K2 are the geodesic curvatures of the surface coordinate

mesh.

The momentum equation can be used to get

% ().
“a(z d3C 3¢/ 3

and
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i % VQZ J¢{ 2C an k
= | . - 2.2 ;
; | for points on the wall, where P = [p + p(/i - 1/2 «'R")]. PFinally, we é
; % introduce the skin friction vector :
E -~ _ :
‘ TW 33 ac (5;“;0) 5,5
? ' and specify that the origin (0,0,0) is a singular point at which ;; = Q. ?
E All this leads to the scalar expressions
|
2 3¢ 3t 3
: - oP 1 1 3
£ 7 = et :
ka7, 0) 738 T 0CE YSEg T ;;
,-;
2 3, a7
‘_ = .;— -a—P- 4 N —— 2 e ;
E , uv(g,'ﬂ, c) 2 an . C, an gc a.ﬂ P
2 % oT ?
1 2 K
w(E,M,0) = - L (EE“ Sﬁ-) -
. in which all the differential coefficients are evaluated at (0,0,0).

From these equations follow the differential equations of the

streamlines in the vicinicy of (0,0,0), namely, .
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Oswatitsch gives the general aralytic solutions for these equations,
from which we sample only a few useful results. The first of these
has to do with the skin friction lines themselves, whose traicciories

(at { = 0) sre governed by rhe nonlinear equation

312 372

an _ 5 o3
dag ETI 511
& Y e

We fizst see whether any skin friction lines eater the origin by seek-

ing the singular straight-line solutions

dn i
e 4 - - e
at £ tan

These exist provided that

97 ) or, o
tan 6 = Sﬁ; _ S%l * [(s%g ) (gz- T )]

5T\

This has two distinct real values {f

2

where

A = E:l E:Z ;= 0Ty ot, ) or, 3:3
14 M 0§ om o1} 9§
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These parameters, together with

il

completely determine the skin friction field near the singular point.
There are few general physical restrictions on the values of the diver-
gence {"}. or the curl (-{3), which may develop in the skin friction
field, so we may expect to encounter in practice singular points of

great variety.

SYMMETRIC SINGULAR POINTS

The skin friction field may be curl-free ({2 = 0) everywhere in
very special cases (e.g., axisymmetric flow, potential inviscid flow
with geodesic surface streamlines), along lines of symmetry on more
generally shaped bodies (e-g., an ellipscid of revolution at angle of
attack), or at least at points of attachment of externally irrotation-
al flow. Singular points encountered under these conditions exhibir
a symmetry, in that the singular trajectories through them are mutu-
ally perpendicular, so that the § and 7 axes can be rotated to ccin-

cide with them. The symmetry then yields

BTl 572

w -3¢ =0

and the general trajactory egration becomes

3 o
%% = ¢ %, with ¢ = (5%2)//<5%£)

To be consistent with Oswatitsch's terminology, we can ceall ¢ the con-
vergence of the singular point. As shown in Figs. 2 and 3, the solu-

tion curves
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all converge at the origin when ¢ > 0 (a node), while ail approaching

P
trajectories except two (along the € and M axes) diverge away from the

origin when ¢ < 0 (a saddle pcint). Convergence, defined in this sense,

is unfortunately not the opposite of divergence, &, but is related to

it by

611

£ {1+ ¢)

A:

Q!

Prom any given trajectory plot, one can quickly evaluate c as the
slope of a skin friction curve at the point where it crosses the line
n=2E&. It is easy to tell the sign of A at a node by looking at the
arrows on the skin friction lines. At a saddle polnt we can derive
the rule of thumb: A > 0 (attachment) occurs when the approaching
gkin fricztion lines are more closely packed (near thelr axis of sym-

metry) than the departing skin friction 1lines.

ANGLE OF THE ATTACHING OR SEPARATING STREAMLINE

For the symmetric singular points, (1 = 0, it is easy to f£ind the
slope, d(/df, of the singular streamline which leaves the wall at the
singular pocint. We suppese that 1| = 0 is a plane of symmetry, so that
dP/3M = 0 f{hence 4(/d7 = =).

The general equation is

d a7
AT

and the singular, straight-line solutioxu, is

d -

where
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tan 8 = - ——%3;—} (1 +¢)
3¢

e

The first factor in this expression is the familiar angie of se-
paration of a two-dimensional boundary layer, with specified values of
SP/3% (> 0 for separation) and 37,/2% (< 0, but bearing no unique re-
lation to 3P/3E). We see that at-symmetric three-dimensional singular
points it is modified by the facter 1 + ¢, which is > 1 for nodes, and
< 1 for saddles. Note that at attachment points of an irrotational

inviscid fiow, dP/3f = 0, and the attaching streamline is normal to

the wall.

MORE GENERAL SINGULAR POINTS

As illustrated by Legendre and Oswatitsch, J > 0 generally denntes
a2 node and J < 0 a saddle point. When 0 < J < 32/4, che friction lines
behave qualitatively as around a symmetric node, while for J > A2/4
they spiral into the origin. (Replace a? by ﬂz and friction lines by
vortex lines, and the last sentence is again true.) If J is greater
than both AZ/4 and 02/4, both skin friction lines and vortex lines
spiral. Evidently spiral detachment (J > azlq and A < 0) occurs quite
commonly in practice, notably on delta wings. Lighthill's diecussicn

and sketches on pp. 74-82 of L.B.L. are very helpful.

NUMBER OF NODES AND SADDLES ON A CLOSED, SIMPLY CONNECTED BODY

lizhthill cites (p. 76, L.B.L.) the following topologzical law,
that the numbe:r of nodal points must exceed the number of saddle points
by 2. He says "one may argue that the infinity of skin friction lines
on the surface must begin and end somewhere, which indicates that there
18 at least one nodal point of attachment and one nodal point of separ-
ation. If there are twu nodal points of attachment, the skin friction
lines from each must somewhere run into one another, and so have to

divide at u saddle point."
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IX. SEPARATION

SEPARATION LINES

From the point of view of topology of skin friction curves, un-
separated flow exists when the entire body suriface is covered by fric-
ticn lines which originate at upstream nodal points of attachmeit, and
disappear into an equal number of downstream nodes of geparation. In
practice, this situation is atypical; experiments ordinarily show the
existance of other nodal "reattachment”’ points, at which the incoming
streamline apprvaches not from the free stream, but from the interior
of a wake bubble. The skin friction lines from the upstream attach-
ment rode and those from the wake reattachment node run towards each
other and hence must divide at a saddle point, which will ordinarily
be a saddle point of separation. The singular skin friction lines ap-
proachiag this saddle point come from the nedes of attachment and rce-
attachment. The singular skin friction lines departing from the sad-
dle point run eventually into a node or two nodes of geparation.

The latter singular fricticn lines separate the body surface in-
to a region which is wetted by the upstream flow, and a region which
is wetted by the reattaching wake flow., They are thus legically de-
fined as the separation lines.

The concepts of a separation line and of nodal points of attach-
ment and of reattachment, a considerable variety of symmetric singular
points, and the rule regarding the relative number of nodes and saddles
are all illustrated in Fig, 4. 1In it we view a "foot-long hot dog,"
sagging somewhat in the middle. A uniferm flow approaches along the
x axis, and the hot dog is supposed to possess mirror symmetry in the
planes y = 0 and z = 0. We view it along a line that is inclined
slightly upstream and spanwise from the z axis, sc that we see the
forward attachment points and the interesting details on one end. The
sketch is only intended to appear plausible, aand does not come from
an actual experimeni or calculation. In particular, if the hot dog
were drocped more in the middle and less at the ends, many more sing-
ular points might be expected to appear in those regions. (These

guesses derive from the paper on saddle points of attachment by Davey
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(referred to in Section VI), and from drawings derived from observed
flow on a yawed ellipsoid by Eichelbrenner, and exhibited in the sur-

vey article b Cooke and Brebner in B.L.F.C.

INFLUENCE OF SEPARATION ON BOUNDARY-LAYER COMPUTATIONS

Separation limits the applicability of boundary-layer theory in
two ways. The first can be anticipated within the framework of the
theory and our previous discussion of domains of dependence and appro-
priately chosen initial data arcs. PFrom these considerations it is
clear that we cannot "march' our computations acxoss a separation line,
since the flow on the downstream side ¢f such a line falls into the re-
gion cf influence of the unknown reattaching flow.

The next question is whether we can march up to the separation
line from the wake-wetted side as well as from the upstream-wetted
side, and thereby compute the boundury-layer development over the en-
tire body. The answer appears to be almost always negative. One dif-
ficulty is that we do not %now, a priori, where the wake-reattachment
nades will be. They do not in general coincide with any singular fea-
tures of an irrotational inviscid solution (and in practice they tend
to wander tempurally, at any Reynolds numbers for which the boundary
layers may be expected to be thin). Furthermore, the fluid attaching
at these points, unlike the free stream fluid attaching at upstream
nodal points, has had a recent experience of viscous action, so that
we cannot ordinarily expect to find self-contained similar solutions
fcr the vicinity of the reattachment node. Finally, even if these
difficulties and those of determining the inviscid surface velocities
in the wake-wetted region could be surmounted, there remains the pos-
sibility that near the separation line the direction of dominant vis-
cous diffusion differs significantly from that of the wall normal,
thus invalidating our boundary-layer equations locally.

The second adverse effect of separation is its displacement ef-
fect, which causes the actual pressure distribution to deviate from
that of inviscid theory cver a region vhich may extend significantly
upstream of the computed line of separation. This effect would then

render insccurate the boundary-layer cowputations in this vicinity,
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and in particular their prediction of the location of the separation
iine.

Though iittle direct evidence as yet exists, Eﬁere is reason to
hope that this latter z2ffect may be less damaging in many types of
three-dimensional flow tham in two-dimensionral flow. These intuitive
hopes derive from the expectations that (1) the angle of separation
may be quite small at and near the saddie points of separation (A be-
ing swall there); (2) the line of separation may be considerably "swept
back"” relative to the local inviscid flow; (3) inviscid flow can to
some extent ge around the regions of vigorous sutflow rear the nodal
separation points.

To set against this optimistic view is the observation that spi-
ral nodes of separation are often situated at the feet of tightly wound
and vigorous "trailing vortices" which may induce profound perturba-

tions of the neighboring inviscid fields.




X. MOMENTUM-INTEGRAL METHODS

Granting the fact that the direct mumerical integration of Eas.
(1) and (2) or of Eqs. (3) and (4) will be very lengthy even if the
wmethod i5 computationaily stable and well-posed, we may wish to inves-
tigate approximate methods which satisfy the equations in a (pecssibly
veighted) mean sense at each x and y. These are the momentum-integral
methods, of which a particularly comprehensive review is given by
Lindfield, Pinsent, and Pinsent in B.L.F.C. We mry derive these equa-

tions directly from Eqs. (1) and (2) or Eqs- (3) and (4) as follows.

THE MOMENTUM-INIEGRAL EQUATIONS IS INTRINSIC COORDINATES

Holding x and v constant, we integrate Eqs. (3) and (4) over z
frem 0 to », and employ the appropriate bLoupdary conditions for f and

G. For an impervious wall, we have
£(0) = £°(0) = GO} = G°(0) = O

The matching conditions are £'(=) = 1 (hence £°(w) = 0, §‘(x) = G (=)

= 0). Integration is assisted by the device of setting

£ = -(1-£)1
sc that in

f £f£" dz = [-£(1 - f')]:-}-j (1 - £9£’ dz
(o] o

.

the first term on the right vanishes at boeth liwmits.

]

We introduce the - v1s

0

61(x,y) =, - £ dz, 62(x,y) = J -G/ dz
"o o]
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=l

0,,(ry) = j (1- €964z,  0,(xy = [ a-£96" dz
o ‘o
9, .(x,y) = r” G’ dz 8. .. (x,y) = ~ -G'2 dz
21 X,y = (0 3 22 ’y ‘o
and get

: .1..(32_1‘_1. ) m .51_{2 )
-£°(0) + + n eli+h1(61+all)+yh (_2+x)

hy M 2 2
L
hl H U.)3 2
912 + (n + k)(éz + 612)] - % 822 -2 m x&

1

38 od

MO W M |
by ox hy oy

For easy comparison with the equation of Mager (1564), we collect terms

in 611 and 912, and note that

n+a 4L

hzy U

where 03 is the (-component of the inviscid-flow vorticity. This al-
lowe a neat combination of 03 ard W, into one teru which vanishes in
many applicationa., Then we have
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and by a similar calculztion on the cross-stream momentum equation

3921 . 1 28
ox h2

22 _67(0) __1 (3m+1

dy x h,x

L
" 1

hy + ZV)BZII + 2w ) U 1

"El" -{( + 2)) 8,, = M8, +8,)) + néé} (6)

Here we have two coupled firat-order partial differential equa-
tions for the gix integral quantities (61, 62, 911, 912, 621, and 822)
and the two wall-derivatives £”(0) and G“(0).

COMPATIBILITY CONDITIONS

We have also at our disposal a variety of algebraic "compatibil-
ity conditions" obtained from Bqs. (3) and (4) and from the z-deriva-

tives of these equations, evaluated at the wall (z = 0):

First Compatibility Condition

w,Lx
"l . R " o Av 3
£ (0) EI and G (0) E;; 2 T

Second Compatibility Condition

/U) L
£%0) = 0 and G"" = )xf”(O)

(In Lindfield, Pinsent, and Pinsent these conditions and the momentum-

integrel equations are generalized toc include the effects of wall suc-

tion or blowing.)

SINGLY INFINLTE FAMILIES CF VELOCITY PROFILES

We follow Head (1961) (whose excellent survey of integral wethods
for two-dimensioanal flowe precedes the articie by Lindfield et al., in

Saekd bl Loy
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Vel. 2 of B.L.F.C.) in calling a family of velocity profiles singly

(¢34

infinite if the shape of a member profile, with respect to a linearly

é stretched z coordinate, is determined by a single parameter or shape
=~
Z factor. The profiie, expressed in terms of z itself, then requires
. twc parameters, the shape factor and the scale factoer.
3
E Mathematically, we write
‘ £/({x,y.z) = 2 f[x(x ) z__|
e sz LY RGOy
: 3 f z 1
g G'(x,y,2) = =— Gl L(x,y} 1
; (x,5,2) PR RACS Y OO
3
3
}\

where x and ¥ are the shope factors, & and A the scale factors.

1£f we employ singly infinite profile families for both f’ and G',
then we shall need four equations to determine the four parameters as
functions of x and y. These are at hand in the two momentum-integral

equations and either set of compatibility conditicns.

x
i
-4
A

.
2
£

Ysually we design the functions £’ and G’ so that the shape fac-
5 tors can be eliminated algebraically by use of the chosen compatibility
conditions, whence Eqs. (5) and (6) can be rewritten as a pair of quasi-

linear partial diiferential equations for the scale factors, & and 4.

Symbolically (now following Mager's discussion (1964)) we have

Faiautin

En

TR

a8 38 Jo1a\ 3L

3 S = +C = v =
;: AZ-+B - Cbx+D5y+E 0 (7)
2
1.
2 ,é_é_ ,__JS_L,_,EA ,BA 7
Aax Bay:uax""D ay"l"E = (8)
where, for example,
3
36 30
b = l—————ll ! Z -];—- 21
A(x’j) h 5 ) A h 36 , etc
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Beicre bepinning a detailed discussion of solution procedures and ap

‘and G, we note the following gain in

proximating exprassions for £
simplicity from Eqs. (3) and (4) to Eqs. (5) and (6)-

Our proposed solution method for Eqs. (3) and (4) was to employ
fipite differences in x and y, to obtain two coupled ordinary differ-
ential equations at each (x,y} mesh point. These latter were to be
solved anumerically, subject to the split boundary conditions (at z = 0
and z = .

If we repeat this procedure for the set (5) and (6), we have, af-
ter fin.te-differencing in x and y, two coupled algebraic equations to
be solved at each mesh poipt. Clearly the computatioral savings zre
great, even though the computational effort of the momentum-integral

method is considerably creater here than in two-dimensional problems.

WELIGHTED INTEGRAL EQUATION

For an alterrative to the compatibility conditions we may use an-
other pair of differential equations to relate the shape factors to the
scale factors. Such equations may be constructed by first multiplying
the momentum equations {(3) and {4} by a "weighting" factor (or factors)
and then integrating over z. These new partial differential equations
will be coupled to the umweighted moircutum-integral equations, and the
substitution of them for the ccmpatibility conditions will luprove the
accuracy of the momentum-integral method only in return for an increased
computational effort. Head gives a number of examples, comparing the
accuracy of various alternative methods for some important and particu-
larly trying two-dimensional boundary-layer problems.

One's hope for a gain in accuracy through introduction of the
weighted momentum-integral equations is strongest in cases involving
a sudden change in pressure gradient (either streamwise or cross-
stream). In such cases the first compatibility conditions, which al-
ways insist on an exactly correct vorticity source strength at che
wall, may wrench the rest of the profile severely out of gshape in the
region just downstream of the sudden change. This effect is worst
when we employ singly infinite profile families, which are incapable

of the sort of shape adjustments which occur in the real boundary layer
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as the new vorticity gradually diffuses cut frem the wall. The typi-
ca. symptom of inaccuracy is a discontinuity or excessively rapid change
cf surface vorticity (skin friction) and displacement thickness at the
location of the csudden change of pressure gradient. 1In these regions
the curve of vorticity versus z has the correct slope, but a very in-
accurate intercept, at z = 0.

The weighted momentum-integral equations ordinarily give special
emnptasis to the role of coavection in the boundary layer, the usual
weighting factors being £’ for Eq- (3) and G’ for Eq. (4)- 1In a re-
gion of sudden pressure change these equations require a good descrip-
tion of the quasi-inviscid response of velocities to pressure gradi-
ents, and since that response is dominant in the ocuter regions into
which the fresh vorticity has not yet diffused, they give s better pic-
ture of the response of "overall" boundary-layer profile shape and
thickness. Close to the wall the vorticity is forced to assume reason-
ably correct values since in a singly infinite prefile family the wail
vorticity and the boundary layer thickness are usually intimately con-
nected. The slope of the vorticity profile at z = 0, and hence the vor-
ticity source strength, will probably be given pooriy by this method in
the regions of sudden adjustment, but unless great accuracy is needed

in the velocity profile curvature, this error may be quite tolerabie.

SAMPLE SIMPLY INFINITE PROFILE FAMILIES

Head and Lindfield et al. present good discussions of the way in
which profile families can be generated by using polynomials, traas-
cendental functions, or numerical functions of the stretched normal
distance. The usual procedure is to wmake a linear combination of two
functions, one of which is selected to give a fair approximatlon to
the profile at attachment points and ir ti2 nelghboring regions in
which the etreamwise pressure gradient is favorable and in which the
inviscid streamline curvature has the same sign as at attachment. 3am-
ples of such "first" functions, from the work of Tiwman (1951) and Zaat
(1956) are




'
f1
(o}
which satisfies
I —
£/(0) = o,
£ = 1,
and
which gives
G]’(o) = 0’
G, (=)
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£]°(0) = 0

vl (n) =
£ = fl () = O

[p]
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. GI'{0) = o0
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G} Gy () o

These functions, which fulfill the boundary conditions on £/ and G’,

are given in Fig. 5. The fact that fi’(O) = G;'(O) = 0 has an impor-

tant bearing on the algebraic simplicity of the subsequent thecry when

the first compatibility equaticns are used.

The second component of the profile must now vanish at z = 0 and

z = o, but can otherwise be chosen arbitrarily with the special objec-

tive of imitating the profound changes in profile shape which accompany
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FPig. 5 -- Zaat and Timman's profile functionms.

the onset of adverse streamwise pressure gradients and changes in the
sign of the inviscid streamline curvature. To achieve this objective

in both £/ and G/, Zaat and Timman propose the function

2 2
)+_.1'_ -

)
N ve

1 -
U = - -
fz 5 (erfc ¢ - e

and let G! be this function of Y. This gives

2
’ = « O . =
£,000 = 0,  £5(0) RO RL
7 = " = aoog (n) =
fz(m) o, f2 f2 f2 (=) 0

Thus we could write
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ety = g () - xeg (3)

and

6(x,y,2) = AG; (-2) -E 6, (fz)

It can be readily verified that both of these ccmbinations can describe
"two-sideé” as well as "one-sided" profiles, as a result of variation
in ¥ and Z.

The extra coefficient Ao is permissible as far as satisfaction
of the boundary conditions of G’ is concerned, and may (I think) be
employed to get the calculation started in the vicinity of an attach-

ment point. In such 2 region exact cross-flow profiles are given in

terms of the similar solutions of Howarth, being

7

o
-
it
ES
4+ h
“lef

v :

where x, y, ¢, gf and £/ are as defined in Section VI. While the func-

tions g’ and £/ are universal in the neighborhood of the attachment

point, we see that G’ will vary with x/y along the initial data arc.

Since Zaat and Timman's G/ has about the same shapz as g/ - £/, we .

1
might take £ = 0 on the initial data arc, and let Ao = (xo/cyo + cyo/xo)-l.

DOUBLY INFINITE PRCFILE FAMILIES

While the singly infinite families of profiles which are composed
from Zaat and Timman's functions may assume at least qualitatively rea-
sonable shapes in interesting problems, particularly if we employ the
“"gentler" but more tedious procedure with four integral equations and
ignore the compatibility conditions, they 3o not have enough flexibil-
ity to permit accurate r-presentation of velocity profiles, such as are
needed in attempts to predict separation or laminar stability. Head
and Lindfield et al. show how this situation may be improved by the
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introduction of doubly infinite profile families, which are character-

ized by two shape factors and a scale factor for each family.

e aan | s Wi

I%# two new shape factors are introcduced, then we need six equa-
viorns in all. These may be the two momentum-integral equacions, two
weighted momentum-integrsl equations and the first compatibility con-

ditions. Obviously other combinations can be used, and Head has tested

(7 it A AR DA

some of these for two-dimensional flows. 7<f one has decided to use the
four integral equations for singly infimite profile families, not too
much extra work is involved in going to doubly infiniie profile fami-
lies.

In fact, for three-dimensionazl boundary lsyers, one might expsct

that the £’ aad G° profiles could porsibly "share" some parameters,

oALICH R E U A L UL 2 ¢ Lol s B

so that doubly infinite families could be used without the need for

L more equations. That is, we might be able to extend our profiles to

el = ’r _ l_v- 4
3
and
G' = AOGI' - zcz' - xc3’

but it would require considerable experience to discover what, if any,

RV

!

3 might make this scheme profitable.

expressions for f; and G

A Ll St Bl

SOLUTION OF THE MOMENTUM-INTEGRAL AND ENERGY-INTEGRAL EQUATICNS

g

Even though the momentum-integral equations can presumably be

solved numerically with much less effort than the full boundary-layer

{Laiis St ioinod

equations, they have seldom been applied to truly three-dimensional

problems. The exceptional examples seem to be discussed by Zaat
{1956) and Eichelbrenner (1957), and both of these employed solution
wmethods adapted only to regions with weak cross flows, Lindfield,
Pingent, and Pinsent (1961) give a general discussion of tiie use of

weighted integral equations, but work no examples in that publica-

— g 3 e et s e
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"uﬁ‘lu"

tiori. Only Tiwuman (1951) and Mager (1957) app2ar to have studied the

0
Hatald

characteristics of the partial differential Eqs. (7) and (8), and no
study seems to have been made of the characteristics of the fourth-
order aystem cf two momentum-integral plus two energy-integral equa-
tions. I have made various attempts to fill this gap in this Memo-
randum, but conclude that the topic is too lengthy and too specific ;;

to be worth including.

Derivation of Weighted Momentum-Integral Equations 3

I1f we weight Eq. (3) by £/ and then integrate over z, the terms

on the right-hand side contribute the derivative terms in the stream-

wise-energy-integral equation. Thesge are

where -

L]
[
[

]

i 2
j £/(1 - £'°) dz
o]

€12 Jm G'(x - f'2) dz ¥
o

If we try, following Lindfield et al., to welght Eq. (4) also by 7
f', we find it is impossible to extract the differentiations in x and %i
y from under the integral sign. (I can only conclude that Lindfield
et al. succeeded in doing this by virtue of an error in calculus.)
The resulting equation would thus be unbearably tedious to employ. =
However, if we weight Eq. (4) by the velocity G’, nc such difficulty 3

arises. The derivative terms are

X (1 %, 1 ae22) s
- -2‘ —m——— e :
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where

€51 E . “ £fc 2 dz
< 3
€ = - j G’ dz
22 o

The momentum and energy integral equations may thus be summarized

as

1 "1 ,1 "1z i
— - . = 0
T + o 3y algebraic terms
1 2
a6 a8
1 _.._._2..]: + 1 _22 + algebraic terms = 0
h, ox h, oy
1 2
e de
i 11 .1 12 algebraic terms = 0
hl 9x hZ 3y
de o€
1 21 .1 22 =
h Bx + hy By + algebraic terms 0

By using the assumed profile families, either singly or doubly
infinite, we can express all quantities in these equations as func-
tions of the two scaie factors, § and A, and the shape factors {two
for singly infinite families; four for doubly infinite families). If
we employ doubly infinite families, we assume herewith that appropri-
ate compatibility conditions have been empioyed to eliminate two of
the shape factors in favor of the other two shape factors and the two
scale factors. We call the remaining shape factors x and £. Then,
in the case of greatest generality (with shared shape factors), we

would know
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we would write

38,

®

3x

and similar expressions for the ocher derivatives.
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1("A,x,z)’ 812 = elz(s,a’x,z)’ etc'
Puas, B, Puy, Puss
36 3x dA oOx

3 ox oL ox

The resulting four

equations for 8, A, X, and £ can be abbreviated by use of an index no-

tation (summation over repeated indices) as

du, du
__l __l -+ =
aij 5= + bij ay Ci 0,
We identify
u, = 6, u, = A, u3
3911 6811
a8 Fo7a)
00, 38,
96 P YA
a = L
ij h1
Osyp  9eyy
86 Al
3621 3921
{I| 98 3L

and

(1 = 1,2,3, &
G = 1,2, 3,4 %
= ‘s ua = 2
3y ¥y,
oY oL
8921 3921
¥ 3z
aell aell
oY 3T
5921 6621
X L
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| 2812 ¥ Fp *, l
l ok A Y Y ‘
il 3 i
28, 38, 29, 36,
3% 3 3 A
- L
oo 3¢ 3 3¢ se. |
12 12 12 12
36 D 3% 3T |

] 929, 924, %y, 2
26 Y 3% )

Difficulties of Further Discussion

One can easily carry on formally, writing expressions for the
characteristic directions of the set Eq. (9) to show that there are
either 9, 2, or 4 real characteristics at each point, and to indi-
cate plausibly that in cases of weak cross flow all real characteris-
tic slopes are close to that of the inviscid streamline. The essen-
tial arbitrariness of the momentum-integral methods precludes more
precise statements for the csse of general cross-flow magnitude. This
makes the numcrical values of the coefficients aij and bij a result
not only of phyeical necessity but also of personal choice (exercinred
in the paramctrization of velocity profiles). Furthermore, if coundi-
tions exist in which some of the characteristins are imaginary, the
criterion for such conditions does not seem to be expressible in terms
of a simple physical concept (such as that of subsonic versus super-
gonic flow in gas dynamics), A feeling for the behavior of the char-
acteristic curves appears to come only from extensive experience with

actual calculations, and this experience does not yet exist.

DPifficulties of Application of the Method of Characteristics

While in principle integration along characteristics (when these
are real) is the preferred method of sclution of equation sets such as
Eq. (9), numerical execution is awkward (leading to either poor accu-

racy or an excessive amount of computation) when the characteristic
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lines all have nearly the same slope, as in the weak cross-flow case.
Such cases bep for a different scheme of approximation. Mager (1957)
amplifies these points som=what.

Furthermore, although they are described in principle by Courant
and Priedrichs (1948), aumerical procedures become very tedious whe:

as many as four real characteristics exist, as may be the case for set
(9)-
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XI. EFFECTS OF COMPRESSIBILITY

In keeping with our anneunced intention to concern ourselves pri-
marily with geometrical rather than thermodynamical complications of
boundary-layer theory, the following comments will be very brief. A
more comprechensive survey of the formal aspects can be found in Mager's
review article.

Compressibility can give rise te, or modify, secondary flows in
three essential ways. One is seen in the onset of differential ''buoy-
ancy" accelerations, which arise in a variable-density boundary layer
under the action of velocity-independent force fields (such as centrif-
ugal or gravity fields). A sample problem would be tc determine the
boundary layer on a strongly heated body that is moving slowly in a
horizontal direction. A survey of laminar flows with body forces is
given by Ostrach {i964) in the same voiume which contains Mager's sur-
vey. A second is easily visualized in terms of the simple quasi-in-
vigeid force-balance explanation of streamline curvature in a three-
dimensional bcundary layer. Since it is pu2 times the geodesic curva-
ture - tich (nearly) balances the transverse przszuce gradient, the cur-
vature of boundary-layer streamlines will e increased by processes
such as viscous dissipation, which reduce p, and decreased by process-
es such as extreme wall cooling, which increase p. In an article on
the applicability of Stewartson's transformation to three-dimensicmal
boundary layers, J. C. Cooke (1961) deduced the rule of thumb that if
(a) Pr = 1, (b) p = T, (c) cress flows are almost negligible, (d) che
wall i3 insulated, and (e) the external flow Mach number is moderate,
then the compressible-boundeiy-layer flow corresponds to an incompres-
sible flow over the same surface, but with a2ll pressure gradients en-
hanced by the factor 1 + (y - 1)M2/2. On the other harnd, for the
boundary layers on highly cooled walls of yawed blunted cones in hy-
personic flow, Vaglio;Laurin (1959) has shown that a weak~-cross-flow
assumption, which decouples the streamvise-momentum equation from the
cross-sflow momentum equation and allows the former to be reduced to
two-dimensional form by Mengler's transformation, is often justified
vy the near-constancy of pu2 across the boundary layer, The third and
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least-studied way iun which compressibility may engender secondary flows
involves the displacement effect of the boundary layer. While 1t has
been possible to incorporate this effect fairly successfully into the
theory of two-dimensional hypersonic boundary layers, tne cnly litera-
ture dealing with three-dimensional cases (other than axisymmetric
cases) appear to refer to corner-flow, or boundary-region, problems.

While we cannot e~laborate here on the subject of displacement ef-
fects, we shall state the definition of displacement thickness of a
three-dimensional steady boundary layer, following Lighthill (1958).
We refer to Fig. 6, which attempts to show two surface streamiires of
the inviscid flow, denoted by T and 7 + 47 in intrinsic coordinates,
and originating at a nedal point of attachment, 0. Ove: each of these
streamlines we sketch a '"wall of surface normals," the two walls meet-
ing over 0. At the point (&,7)) we erect a rectangle with base h2 d7
along the § = constant curve, and height 6, alorg the local normai
({-axis).

Fig. 6 -- Control volume which defines displacement thickness.
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e may define the displacement thickness, 6., at &, 7 by equating

the inviscid mass flow through the rectangle, peth éq &,, to the mass

flow “displaced by boundary-layer action" between the attachment node

and €, M. Part of this displaced flow is accounted for by the deficit

of streamwise flux in the boundary layer at €, 7. This deficit, reck-

oned as a pozitive wuwmber, is h2 dan f: (peU - pu) d(. The remainder
of the displaced flow has leaked out through "sidewalls” of normals,
between 0 and §, due to boundary-layer cross flow. Between £’ and

€’ + d€’ this deficit, again reckoned as a positive quantity, is d1|

3/a7 [hl d€’ j: pv d{], and the accumulated deficit between boundary-

YT Wmﬁmﬁﬁﬂm&u et T Lo

layer attachment and the point of interest is
S 3 ®
an [ & [ 8hm [ eehvsn ac] ag’
o, L )

Thus we get

(=]

p Uy an = b, an |

v

3 o
(p U - pu) d( + dn I %‘- [hl ‘! v dg] ag’
(o] [s]

(o}

Introducing the "displacement integrals of the primary and secon-

dary flows,"
” pu
6, = I (1 ) U) d¢
o e
and
. v
8 = | pudk
o e
ve get
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In closing these brief remarks, we enter the observation that
transformation metheds, intendad to carry compressible-flow problems
over into p.eviously solved incompressibie-~flow problems, appear to
play a relatively minor role in the theory of three-dimensional bound-
ary layers. Only in exceptional cases (e.g. Poots' {1965) analysis of
the compressible stagnation point boundary layer) is an exact compres-
sible-incomprussible correlation established, while compressibility de-
atroys the very feature (i.e., the independence principle) which under-
lies many of the available incompressible solutions.
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XI1. STABILITY OF THREE-DIMENSIONAL IAMINAR BOUNDARY IAYERS

The theory of hydrodynamic stability of three-dimensional boundary
layers is reviewed by Stuart on pp. 549-558 of Chapter IX of L.B.L. An
additional importsnt survey is made by Brown in Vol. II of B.L.F.C.

The starting point of the usual theory is stated by Stuart {in
Gregory, Stuart and Walker (1955)) as follows:

YAt a local station in the flow, the equarions of sta-
bility, with certain approximations, were found to resemble
formzlly those for two-dimensional flows; the relevant mean-
flow velocity is the component in the direction of propaga-
tion of the disturbance at that particular station.!”

If we assume that the spectrum of available infinitesimal distur-
bances is isotropic in direction, the stability theory for two-dimen-
sional flows can be applied to the projections of the undisturbed ve-
locity profile on various planes passing through the local wall normasi,
to find, for example, the minimum critical Reynolds number as a func-
tion of the angular orientation of the plane.

The most prominent result of such a study (examples are given by
Brown and by Gregory, Stuart and Walker (1955)) is the destabilizing
influence of secondary flew. In its pregence, the velocity profile
inevitably exhibits an inflexion point in many of its projections, as
shown in Fig. 7.

Inflected profiles (see for example, Schlichting (1960) p- 387)
have lower minimum critical Reynulds numbers and wmuch larger areas of
instability in the wave-number versus Reynolds-number plane than do
profiies without inflexiorn, This fact partly determines the appropri-
ate methods of analysis of the stability equation (see 3Ircwn (1961)).
An infallible rule of thumb to indicate which projection cf the ve-
locity profile has the lowest critical Reynolds number does not seem
to exist, but from examples shown by Brown it seems to lie close to

the cross~flow (¥ = 900) profile.

*
This assumption has recently been criticized by Lilly (1964)
in a study of Eckman layer stability in a rotating tark,

At AFEBIS mees o e e s seea
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Fig. 7 -- Projections of the velocity profile
on planes thrcugh the normal.

A projection of unique importance is that in which the inflexion
po.nt coincides with the crossover peint (where the projected u is ze-
ro). Such a profile can support a stationary neutral disturbance
(phase speed Cr = 0) whereas the usual neutral disturbances of two-
dimensional boundary layers are traveling waves with Cr > 0. (See,
for example, Fig. 16.12, p. 397 of Schlichting (1960)). Such ata-
tionary disturbances, having somehow appeared at particular locations
on, say, a swept wing or a rotating disk (Gregory, Stuart and Walker
(1955)), manifest their continued presence by a street-like pattern
made vigible by china-clay technique even substantially upstream of
transition., Stuart's theory successfully predicts the "sweep angle”
of these streets (which lie at right angles to the projection plane
in which the inflexion and crossover points coincide), but gives

poor estimates of the observed wavelengths. Eichelbrenner and Michel
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(1958) have made observations of what may possibly be the same phenom-
enon occurring on a flattened ellipsoid. Finally, it has been specu-
lated that even turbulent layers may be subject to this sort of insta-
bility, evidence for which is the regular streets of Sargassum or foam
occasionally arrayed over large areas of the ocean surface (Faller,

1964) or by cloud rows in the atmosphere (Faller, 1965).
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XIIT. TRANSITION TO TURBULENCE

While it is known that transition to turbulence of the laminar
boundary layer does not take place by simple amplification of two-di-
mensional disturbance waveg, Smith (1956) was able to £ind a useful
description in texms of stability theory parameters of a correlation
of smooth~wall, low free-stream turbulence transition data made by
Michel (1952). An attempt to extend the Michel-Smith trenmsiticn cri-
terion to make it applicable to three-dimensional boundary layers with
weak cross flows has been described by Eichelbrenner and Michel (1958),
and tested by them with china-clay observations of transition on a
yawed ellipsoid of revolution. Because the comparison seemed less suc-
cessful than one might have expected, particularly along the flenks of
the ellipsoid, they then tried a second transition criterion, that of
Owen and Randall (1952 and (1353), which appeared to be related to the
instability of the secondary flow.

Owen and Randall's criterion is derived from experiments on yawed
wings, and does not pretend to any great generaltiy. In its present
state of development, it simply associates transition with a single
critical value of a Reynolds number based on boundary-layer thickness

and the maxiwum value of the cross-flow velocity:

Re = y ~ 200 - 300

tr max

< jor

vhere the range of values presuwably ccmes from some ag yet unexplained
dependence on profile parameters.

When Eichelbrenner and Michel plotted points of Voax &/v = 300 on
the surface of their ellipsolid of revolution, they found much better
agreement with the observed transition curve at overall body Reynolds
numbers UmL/v = 2 to 6 million than they obtained with the Michel-
Smith criterion. O0f course, only the latter criterion could apply on
lines of symmetry where Voax © 0, and in the vicinity of guch lines it
might be presumed to be the preemptive criterion.

Finally, Eichelbrenner and Michel remark that their obseryed tran-

sition lines frequently exhibit 'tongues," the number of which appears
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to increase with increasing Reynolds number. Similar tongues show in
china-clay pictures of transition on swept wings, where they presumably
develop from the stationary, swept laminar disturbances.

While the "tongues” of Eichelbrenner and Michel may be of a simi-
lar origin, the distances between them are not negligible compared to
radii of curvature of the ellipscid itself, so that one of the basic
approximations of the standard *plane-flow' stability theory cannot be
satisfied.

No detailed studies of the mechanics of transition of boundary
layers with cross flow, comparable to those made by Schubauer, Kleba-
noff and others for the case of two-dimensional undiscurbed flows,

seem to exist.
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X1V. THREE-DIMERSIONAL TURBULENT BOUNDARY LAYERS

On exterior aerodynamic surfaces, in rotating machinery, ard in
natural flows (rivers, the atmosphere, etc.) one has to deal with
threa-dimensional boundary lavers that are turbulent. The theory of
such boundary layers is only very slightly developed, and perhaps be-
cause of the formidable aspect of even the laminar-flow differential
equations there has been almost no work along deductive lines, utiliz-
ing ad hoc models of eddy diffusivity or mixing length to provide the
wmissing link between Reynolds stresses and mean-velocity derivatives.
Exceptions can be found in the meteorological literature, but they
typically involve special assumptions (negligibility of boundary-layer
growth rate or of horizontal mean-flow convection which set them fairly
far apart from the main-stream of boundary-layer theory.

Most studies of turbulent three-dimensional boundary layers have
thus far taken an inductive and empirical approach, seeking out ways
by which measured mean-velocity profiles can be represented parametri-
cally, in hopes that momentum-~integral methods can be devised to pre-
dict the evaluation of profile parameters for given bodies, surface

conditions and external-flow velocities.,

TIME-AVERAGED BOUNDARY-IAYER EQUATIONS

The boundary-layer approximations to the time-averaged Navier-
Stokes equations, for the case of constant fluid density and viscos-
ity, and for a steady but three-dimensional time-averaged flow, way
be derived by the following sequence of assumptions.

The boundary layer is thin by comparison with any radius of cur-
vature of the body surface, so that we may still assume h3 = 1,
Bhllac = thlag = 0 in the region of interest, With these simplifi-
cations the instantaneous momentum and continuity equations can be

combined to give
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du , 1 9 2 1 9o 2 2
§E+r§_(u) 'ﬁ‘a—ﬁ (uv) ~l»ag (w) + (u° - v)sz'!-ZuvH.1

E 3 1 g
E . i3 L 2.3 (3% other viscous terms which >
;. - + — <= (A + B2 2% ) - 20v =v \*= 4 are linear in the velocity
> | h, of 0~ 2 3 \B 2

i 1 C components

v . 1 9 1 3 .. 2 2
Fr e 3 (vu) + ho (v ) + & 3¢ (vi) + (v u )nl + 2vun,

; 1 2
£ 13 1 22 %y
: + = = (A +2 .2 w R ) + 2w,u = v {—= + other linear viscous terms)
% h2 1] p 2 3 g2
and
ow ., 1 9 1 8 . (w?
oc ¥ B8 O ey () g OO
§¢.
5 4 8 w2r2 3w other linear Y
. SE (A + B -‘— ) + 2(oyv - @y u) = v (aCZ * viscous terms/
3 In these equations
A . M = -——1-- ii:—]:- and H = -——1—.. E.i.\.g.
. 1 h.h, o7’ 2 h;h, 3§

172

are the geodesic curvatures of the surface coordinate curves.
Into these equations we now introduce the decomposition of tur-

bulent variables into mean and fluctuating parts, and then average

over time. For example, we write u = u + u’, with the understanding

that u = u, a’ = 0. Then

52 = 52 + 2uu’ 4+ u'2 = ﬁz + u'2
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We assume that du/dt = G. To save space, we simply imagine this oper-
ation to be carried out.

We now assume that the thinness of the layer implies that if llh1
3/3E() and 1/h2 3/3%(") are taken to be of crder unity, then 3/3((")
i3 an order of magnitude larger (say O(L/8), where &/L << 1). The

quastity 1a () may be any averaged property of the velocity field,
12)

like a or {u For the moment we use this assumption only to estab-
lish the fact that the mean-flow viscous terms (e.g., vazﬁlbgz), re-
tain the same form as in a laminar boundary layer, and to establish,
from the time-averaged continuity equation, that if u and v are taken
to be of order unity, then w is of order §/L << 1. With these approx-

imations the time-averaged boundary-layer equations become

1.3 -2, .1 3 -- . 3 ,-- -2 -2
ca 1l o p_1 2.2)_
+2uvn1+hla§(/\+p sz) 2(93
2. —
du [L 3 . /2 . 1 ___
v S ReH R @ e @]
- (u'2 - v'z)x2 -2y’ "
L3 ooy w13 248 a2
oos L3 (4 aB oL, 22
+ 2vu42 + hz 3 (A + ) w R ) + 2w3
- u@fﬁ_[i._é_(w),,l_ (,2)+ - G ]
s Lhy 38 h, oM
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and

(A + % -'% msz) + Z(le - wzﬁ) =

w' [«
[2mY

13 1t _—,-—, 2
g( )+ » S+ g(w ﬂ

To make further simplifications we must have additional experi-
mental knowledge, regarding the typical orders of magnitude of the
kinematic Reynolds stresses (e.g., u'2,';7;7) and their derivatives.
This information is not directly available for three-dimensional tur-
bulent boundary layers, so we shall have to employ a liberal amount
of guesswork. We should note with particular care that while v'2 and
u'2 are probably roughly independent of our choice of surface coordi-
nate system (in a two-dimensional boundary layer, streamwise fluctua-
tion and cross-stream fluctuation are roughly equally erergetic), v
and 62 do depend on this choice. We shall proceed in intripsic coor-
dinates, and shall assume that all kinematic Reynolds stress compo-
nents are of the same order of magnitude, which we estimate (from Kle-
banoff's data for a zero pressure gradient two-dimensional boundary
layer) to be nc more than 1 percent of the local Uz. Thus we shall
drop 1/, 3/3§ (u™v?) and 1/h, 3/3, (vH? compared Lo 3/3¢ (v in
the "|-momentum equation, and make corresponding simplifications in the

other equations. The ({-momentum equation can be integrated over { to
give

P(E,M,0 =

o oy

—_— )
- % w2R2 = Po(§,n,m) - w'z + 2 f; (wzﬁ - le) dg

With the agsumption that any coordinate spin is wmoderate, so that
wU6 is at most of order §/L << 1, we can drop the integral. Then, when
oP /6@ and 3P /an are evaluaCed from the inviscid | momentum equation, we
shall be comparing 3/3% (U ) or Uzu with 3/9€ w’°, and we assume that
the fluctuation term can be dropped in that comparison, Substituting
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for BPOIBE and BPOIBT} in the &- and 7-momentum equations, and using

the continuity equation again, we find the forms

u du U dU, v du, - du - -
b BE T ho ot + o 3C +w - v uz + uve, - 2w3v
1 1 2
3% 3 4 2 R —=
v 22 = (@) - (- v n, - 2ufiin (20)
273 2 1
of
and
U dV , VvV dr, - du 2 -2 -- -
hla§+hzan+"ag+(u -u)n1+mm2+2w3u
3% 3 a2 ——
ol B v O 30 R CARIE R S LR I (1)
ac2 o6 2

We reserve judgment on the importance of the last two terms in

each equation until we have integrated these equations over (.

MOMENTUM-INTEGRAL EQUATIONS

We note the boundary conditions at { = O,

u = v = 0 (no slip)
w o= 58 (given blowing velocity)
u'w’ = viw! = 0 (for a smooth wall)
v~y U2
v 3—(; -uwl o= o Cf]_

and
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v g7 i
ov _ 2! = at a rough wall
v 3C vy 7 sz {at a rough wall)
3t § = o,
u = U, v = 0
ég = ﬁ = "‘ 4 = LA =t
3C = 3C u'w v'w 0

We define the integral thickness as

(o<} - D -
= _2 = - !-
Ly, = f (1 ) d¢, Loy Io v 96
® a = 3
18y, = tﬁ(l‘ﬁdg 19,, = °L;§%
O - s B o
T = .Y_ _E‘. = - 111_ =
8, Io : (1 4) ag, 18, IO > ag = 18, + 18,
ot 12 —75 o0
= u’” - v = [ (uvly,-
¥y, jo ( ) ) d¢, I¥i9 S, N7 %0

Next we add (u - U) times the time-averaged continuity equation to (10)
and v times the continuity equation to Eq. (11). This gives

{ ~u\au , 1 3 v 3U

u )-—Z -ﬁ—--g—[(u-U)]+—-—[v(u-U)]+—;—ﬁ+ac[W(u-U)]
- - 2 - - a- - 526

+ [(u - Mu ~-v ]nz + [(u - U)v + uv]nl - 2w31 = v ;Ei

- & @ -

- v'z)n2 - 2u'vn
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and

%{%E(uv)-!-l"-—ﬁ() + S C( W9) - (UF - a2 + vEym |+ 26,

+ 2w (@ -0 = v GFD - 02 - u P, - 2T
- a

All terms will now give finite values when integrated from [ = 0 to
{ = @« (In these integrations U and hl’ h are taken independent of

.7 After division through by U2 and lntroducticn of the symbols
e b -l

(and other sywbols such as m, n, A, n, as used above); ye obtain

c
20 30 £
1 Y1 % 5 i i
hy 9% ' h, By _ 2 hx (m(20;; +8,) +n(8;; - 8,, - F,)]
hy “127 TU C12 ] U
and
c
36 a8 £
1 %21, 1 % 2 2
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Note: Except for the presence of the blowing velocity and the "fluc-
tuation integrals" Fu and 312’ these equations agree exactly with the
laminar flow Eqs. (5) and (6). The apparent differences in their re-
spactive right-hand numbers came from the fact that in our laminar-flow
treatment we have measured &'s and 8's in units oé 2z, where

% -\/UL/vx(C,/L), while in the present trearment they are measured sim-
ply in units of (/L. This means that

3 = 2 (é) a-1 (%)
3= 211,19 = %, §) YT Cua

2 = o (%) n_ (i’)
3y 012,223 = 57 %12,20 \T) * 75 P12,22

5imiiarly we can show that

In their present form (with §'s and 6's measured in units of {/L) and
with the suction-velocity term Cvs/U, the equations arc eiasily special-
ized back to their familiar forms for two-dimensiorw: boundary layers
(h1 ], Hm )= 03 =0y~ 0). Then the streamwis: momentum-integral
equation becomes

] c
P £

11 1 m
ax 7o - (28, 8 T

C.‘lmtl

ELIMINATION OF THE FLUCTUATION INTEGRALS

If we can make order-of-magnitude estimates from data on two-

dimensional boundary layers, it appears as though Fll may not exceed

2 percent of 911, and hence it may be dropped wherever the two quanti-

ties appear as a sum or difference. (This relies on 911 4 922 being

not much smaller than 611, an assumption which could only be violated

in case of extraordinarily strong cross flows.)

e e e - e i i i AT i A N P P 2
b e e et et

ITPTIRRANTe KIe  2 JU X IS TCA LI RV SV T R CAT I T T e

*
MMV E e Tiaas e Y

il oL ok AR AN DT
- ErATYL) PR TRV TS N LYY N A SR R LA O a1 0 AP ST el 0T T
e LAY s ™8 VR S AR R Tor b SR B S ROARn w8 AT, AL LR Sa v

|l eV MU R SO A R S et BT R B VICINE WE R

E
s



-76-

We cannot so decisively dispose of F12 by comparison with 912 or

921, since it is hard to decide on typical orders of wmagnitude for

either quantity. Since further development of the theory would be

cor 7

nearly impossible in a case in which F12 was important, we shall ar-

bitrarily ignore it. The equations which we shall discuss further are

W« At

then cast entirely in terms of integral quantities which can be de-

rived from assumed profiles of v and v and the friction coefficients

C and C, .
fl f2

e v g e s B Vil e

j COYNT OF UNKNOWNS AND EQUATIONS

If we accept the approximations whereby "fluctuation integrals"”
% such as F11 and F12 are neglected, we are left with two differential
equations for the determination of seven unknowns (five independent
integral thicknesses and two skin friction ccefficients).
Fer subtle reasons which could hardly be anticipated before an
examination of experimental u and v profiles {(see Rotta (1962) pp-

70-73 and pp. 172-181), the compatibility couditions at the wall do

not provide useful additional relations between the &6's, 8's, and say,
the given pressure gradient.

Additional weighted momentum-integral equations can of course be
formed, but we can see at a glance that these will involve importaat

integral thicknesses in which the Reynolds stresses appear in the in-

tegrands. For example, the u-weighted §-momentum equation will involve
the thickness

ALy D332 S A B FA R

¥
oag(UW)dC

which describes part of the conversion of kinetic energy from the
"mean-flow budget" to the "fluctuaticn budget.” Since the Reynolds
stresses are harder to measure, with acceptable accuracy, than the u
and v profiles from which the 6's and 0's are computed, there does not
yet exist an extensive ewpirical base for work with the weighted inte-
gral equations. If we abandon Laem, we are left to devise five addi-
tional relations between the 5's, 6's, Cf's and our given parameters,

by direct examination of experimental data.
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EMPIRICAL GENERALIZATIONS ABOUT TWG-DIMENSIORAL TURBULENT BOUNDARY-
LAYER PROFILES

In many cases, especially those with weak cross flows, we expect
the streamwice velccity profile to be quite likc those which have been
so extensively studied in flows possessing a carefully cultured two-
dimensionality of cthe time-averaged state. The properties of such
flows have been reviewed in detail recently by Kotta (1962} arnd Schu-
bauer and Tchen (1959). We are mostly interested in the empirical
generalizations for u which are reviewed by Rotta om pp. 156-166. In
particular, we select for further discussion the doubly-infinite family

of u profiles given by the wall-wake model of Coles (1956).

The Wall-Wake Mcdel of u Profiies

According to this model, which though frankly empirical and ap-
proximate, is capable of fitting experimental u profiles with remark-
able accuracy throughout a wide range of both favorabie and adverse
pressure gradients, the profile is constructed by a linear combination
of two universal functions. One of these, called the wall function or
the law of the wall, relates u only to the local friction velocity,

u E\f?;75, the kinematic viscosity v, and the normal distance {, pro-
vided that the wall is smooth. For nonzero skin friction, this law
dominates the u profile over some finite range of {, and within this
regicn the local pressure gradient has no direct effect (within the
broad range of conditions on which the law is based). By dimensional

analysis, this law can be written

When the wall 18 rough, and if the roughness eiements possess geometri-
cal similarity in their shape and spacing so that they carn be charac-
terized by a roughness height kr, the law may be generalized to
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In some cases, particularly those involving favorable pressure
gradients or large Reynolds numbers, the wall function may suffice to
describe u over a sufficient range of u_ /v so that, for u v 2 50,

it assumes the famous logarithmic form
u ¢ u {
T > - 1 (_I_)
£ ( 5 50 T In m +C

with X = 0.41 and, for smooth wills, C = 5.0, as found from experiment.
When this is attained for a rough wali, the effect of roughness is en-

tizrely in the "constant' C:

1 uTC uTkr
f1 = X in (7;- +C ( ) roughness shape) (u

£

TV > 30, ¢> kr)

The dependence of C on uTkr/v is independent of shape, but for
Nikuradse's sand grairs, uTkr/v < 5 gave C = 5.0, or smooth flow,
while for uTkr/v R 70, fully rough flow with C = c. (shape only)
(1/K) 2&n (uTkr/v), so that ﬁ/uT = (1/K) £n (C/kr) + Ct (fully rough).

The direct influence of local pressure gradient and boundary-
layer thickness enter u through the second, or wake, component of the
profile. The form of this was discovered by Coles (1956) by a proce-
dure indicated in Fig. 8. Onrly profiles for which the logarithmic
portion of the wall law was empirically well established could be
uged initially. The wake component was determined by subtracting the
extrapolated (logarithmic) wall law from the measured u, and a defi-
nite procedure for defining the boundary layer thickness 6§ was estab-
lished (as seen in Fig. 8). Ideally u_ as well as u should be direct-
ly measured in the experiment.

The experimental reeidual, u - qu, was discovered by Coles to
have a universal shape in boundary layers under a free stream of suf-

ficiently low (< 0.1 percent) turbulence level. With § defined by
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30 _
i Midpoint Measured points
Yy
Tangent to data,
20 | parallel to I'}

I
~

Line {j to I & II
half-way between

i
|
Iogérithmic portion oZ the
10 : law of the wall
B i

!

!

1

1

}

! 8

; —~This value of = 5 by
0 i assumption

'/

[ (actual measured distance from wall,

plotted on a legarithmic scale)

Fig. 8 -- Law of the wake.

Fig. 8, and with a universal wake funcvion W({/$§) normalized to run
from 0 to 2 as ( goes from O to &, Colas' complete wall-wake modsl for

u is given by

[T T Tr), o, (6
u fl( , V)+Kw(6/, 0 sy < &

In this the dimensionless parameter (%) assumes values determined by
the local pressure gradient and prior boundary-iayer history, and K
is again the von Xarman conatant. We can re-express it in terms of

the given U (instead of the unknown uT) &8

c C ¢ k
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We see that this forms a doubly-infinite family of profile shapes,
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governed by the three dependent-variable parameters §/L, Cf, and W and
the two given parameters UL/v and kr/L' By setting { = 6 we get one

relation between these parameters, namely

z ., /if_(&)g ‘fc_f.(ﬁ)i , 2
C 1 2 \v/ L 2 \v L K
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This difficult fmplicit relationship is untangled graphically by Rotta
{1962) on pp. 168 and 169 (for C = 5.2).

. ; The integrals for 6 and 3 can now be carried out by noting

[ETIE NE T ONE) TS [ 1] YL
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that I W(g) do = 1, and 1gqor1ng deviations of f from its asymptotic
! logarithmic form, so that f g of /Bg a{C/8) ~ 1. We get
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C c
8, = 6{V—§- (—-——1:")-—5—(1+cm+sn2)}
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where, according to Coles, ¢ = 1.600 and 8 = 0.761.

VR

The "Missing Relation''

3t CA STl

When 61 and 911 are eliminated in favor of §, Cf, and 1, the mo-

mentum-integral equation plus the free-stream relation (boxed above)

give us two equations for three unknowns.

Bt afe L0 Pk A 8 Lt

Neither of these equations postulates any direct local connection

between pressure gradient and profile shape, and we might hope to find

AR %0t D2 P

gomething like this empirically, perhaps in the form of a correlation
between 17 and 51(ap/a§)/70. Each of these quantities is constant

ALY L T

(Coles 1956, Clauser 1956) in so-called equilibrium or self-preserving

boundary layexrs, so that a few poinrs on a correlation curve are readily
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available. Of course, it is naive to hope that a local correlation

of this type might hold very generally ir boundary layers in which n
changes radically with §, but even a rough correlation would probably
lead to results as good as those obtainable with other popular meth-
ods--e.g., that of von Doenhoff and Tetervin (see Schubauer and Tchen,
1959). Good accuracy would be expected in favorable pressure gradients
(where m is small, ranging between zero in converging channel flows to
0.55 with zero pressure gradient), and pcorer accuracy would be ex-
pected as dp/dx becomes increasingly positive and separation is ap-
proached. In the latter case the detailed history of boundary-layer
growth is bound to play an increasingly important role, even more so
than iu laminar layers. In the extreme, Clauser (1956) discovered
that the profile in strong adverse pressure gradients was go sensitive
to upstream history that it could not be effectively manipulated by
changing the local 3p/d8. This phenomenon is occasicnally referred

to as instability, in the sense that a small local change in 3p/d& (or
in wall roughness) may produce a downstream effect which grows, rather
than diminishes, with increasing downstream distance.

Finally, we note with Rotta (1962), p. 199, that the "missing
relation,” as we have called it, must be an independent empirical dis-
covery, and that it cannot be obtained by any manipulation of the
equations (momentum and continuity) and profile information (T({/6,
6/L, Cf, m)) we alxeady possess. For example, even though Coles has
shown that the wall-wake model can be applied to the momentum equs-
tion, and accurate values of Reynolds stresses computed, the result-
ing stress profile cannot be inserted into (say) the energy integral
equation to obtain our missing relation. What results from such a

procedure is an identity (1 = 1) and not an independent equstion.

EMPIRICAL MODELS FOR THREE-DIMENSIOMAL TURBULENT BOUNDARY-LAYER
PROFILES

We found in our review of the two-dimensional turbulent boundary
layer that there exists a profile model, the wall-wake model, which
accurately fits a very wide variety of profiles by usc of two univer-

sal functions and three parameters, even though we do not yet possess
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an effective way of predicting these parameters. We now wish to see
whether in the three-dimensionzl case we can go equally far, discover-
ing widely applicable models for both the streamwise and cross-flow
velocity profiles. As might be expected from the comparatively small
amount of study yec given to three-dimensional boundary iayers, thz
answer seems to be not yet." Two m2jor proposals, both of whichk seem
to have sgome experimental support, have been made; they agree in some

cases and disagree in others.

Generalizztion of the Wall-Wake Model

In his 1956 article Coles szuggested a straightforward vector gen-

eralization of the wall-wake model into

where fl and W are the same universal functions as in the two-dimen-
sional case, and 1 (C,M) has become a tensor parameter, which operates
on the friction velccity to beget another vector tangential to the
wall. The fricticn velocity vector has the direction of the skin fric-
tion vector, and its magnitude is, as before, u u\f;ZTE.

Experimental testing of this model requires accurate measurements
of both magnitude and direction of velocity and skin friction, and it
appears that instrumentation employed so far is somewnat cruder than
that used in two-dimensional flow studies. Be that as it may, the
test would in principle consist of two steps: (a) a check of the par-
allelism of the wake-component vectors, as visnalized in the polar
plot of Fig. 9; (b) a plot of the wake-component magnitude versus (.
If the data pass the first test (parallelism of wake-component vec-
tors) we then see whether the awplitude of the wake componrent can be
described by a universal profile function. Finally, if this wake pro-
file shows the symmetry of W((/6), & is easily determined, and so is
the amplitude of the vector T 37'

Since 1956, various experimenters have compared data with the gen-

eralized wall-wake model; while none of thelr comparisons quite live up
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Direction of skin friction

Wall-component

Wake-component vectors

=Direction of
‘ﬁ\§\/// inviscid stream
Measured velocity vectors

Fig. 9 -- Projection of velocity profile on tangent plane.

to the conditions we have ourlined {in particular, GT is almost never
Jizectly measured) they appear to provide fair confirmaticon of Coles'
ideas about the wall cowmponent, and fair to poor confirmation of the
proposed behavior of the wake component. (See Perry and Joubert
(1965), Hornung and Joubert (1963), and Johnston (19€0j.)

Johnston's Triangle Model

Taylor and his student Johnston (1960), presented in 1959 and
1960, respectively, a striking empirical generalization about the polar
plots of three-dimensional turbulent boundary-layer profiles. This
has becomwe known as the triangle law, for reasons seen in Pig., 10.

v

.Direction of GT

y 0

Fig. 10 -- The "Triangle Law."

SR e ek e e aeen M~ e

e
%3
Qf

Agxy




;
%
5

%
3

T

A @y

7.
53
K
S
e
%
5
e
b
B
3

K
s

e
rd

Haapde AR

il A5
7

K,
Ik
&
P
i
2

L]

W oo,

& Ty st
<

-*

84—

Many pular plots were found to be nearly .riangles, with base given
by the inviscid velocity vector ﬁ, one side aligned along the skin
friction direction, and the¢ third making an angle with U which appeared
in many cases to be simply related to the total angle through which the
inviscid streamlines had furned after a point in which the flow had
origirally been two-liiensional. The triangle law is thus a simple
statement of the dependence of v on u, without direct reference to {.

It is a two-part statement. In Part I, which is clearly related to

Coles' wall-dominated region,

In Part 1I, the outer region,
v = AU - u)
The corner at which I and II join, was estimated originally by
Johnston to fall at uT;/v ~ 16, but much higher estimates (~ 150) are

given by Hornung and Joubert (1963).

Coaflict Between the Two Models

While certain sets of aata (for example, that of Kuethe et al.
(1949), which Coles first examined) scem to fit both models fairly
well, it can readily be seen that the two models are in fairly di-
rect conflict. For example, we can show that if Coles' wake-compo-
nent vectors are indeed parallel, and if Johnston's triangle rule is
rigorousiy applied, the wake-component magnitudes cannot be described
by an S-shaped functicn like w(E/8). Under the assumed conditions,
the angles @ and B in the polar plot (Pig. 11) are independent of

{- Thus we get

sin @

Uake (O = FIn B Mearr O - Yagn (6]
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Fig. 11 -- Hypothetical projected velscity profile.

E If we assume that the wall law is logarithmic for C > gl and define
;1' = 3 5 3 :
i W ZLwake(c)/uwake(')’ we find tha

y = N/ (8
W = 214 £n ¢
n gl)/ n \';1/

LAl
-

& Curiously, this gives a fair fit to Hornung and Joubert's wake func-

Sety, o
s

tion data, as shown in their Fig. 7, with the reasonable choices of
6/(,l = 20 or 30! Coles has suggested that the generalized wall-wake
model is most likely to succeed in cases in which the divergence of
3 Reynolds stress is reaseonably large compared with the lateral compo-
nent of inertial force, i.e., when 3t7/3( z,puznl, and he estimates
puznlf(BT/ag) to be about 250 nlé. If the radius of curvature of
surface streamlines is much shorter than a few hundred boundary-
layer thicknesses, the outer part of the boundary layer accelerates
as a more or less inviscid, although rotational, flow. The latter
situation has been assumed by various authors to be the one for which

the triangle model will be most successful.

SUMMARY

One could go on to point out sample flows for which Johnston's
triangle rule cannot conceivably appiy, but perhaps it is clear from

what has been already said that the prognosis for successful computa-
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tions of three-dimensional turbulent boundary layers is quite poor at
present. There are undoubtedly problems involving favorable pressure
gradients and gentle streamline curvatures in which success nearly
comparable to that available in two-dimensional probleme is possible,
For example, Eichelbrenner's {1963) extensive computations for ring
wings, and those of Vaglio-Laurin (1959) for reentry bodies, use very
simple profiles and skinefriction laws. Turbulence complicates the
problem in a fundamental way, but it also probably suppresses anoma-
lous cross flows by its vigorous moment:m exchanges, and qualitatively
can be expected to have a beneficial effect upon the prevention or de-
lay of separaction.

It seems that detailed experimental work on three-dimensional
turbulent boundary layers is not only needed in its own right, but
may also somenow help us to sift hypotheses or generate fresh ideas
about the behavisr of two-dimensional flows. The problems of instru-
mentation for such studies are quite acute, and it is even more diffi-
cult to attain high Reynolds numbers and desirably thick boundary lzy-

ers than in studies of two-dimensional flows.
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XV. SUGGESTIONS £OR FUTURE WORK

These suggestions do not reflect a review in depth of all important
and outstanding problems of the field, but represent a collection of
items which appeaved to be most interercting and perhaps significant

within the scope of this study.

THEORETICAL TOPICS

1. Davey's "strong saddle points of attachment,’” and their place
in a complete flow field. These solutions exhibit a kind of "reverse
flow without separation,” or "harmless separation.' When situated on
a leading edge between two adjacent nodes of attachment, the solution
for the singular region implies a fascinating flow structure in which
the saddle point of the inviscid flow field is transformed into some-
thing like an unusually simply-described reattachment node in the sur-
face fiow. Whether this really happens in nature is apparently an open
question, and a convincing theoretical clarification would probably be
heraldeu as a tour de force in boundary-layer theory.

2. TFurther development of the three-dimensionalization of Smith
and Clutter's numerical procedure. What lhas been given above is only
a very preliminary sketch. Scme careful analysis might be worthwhile
of finite-difference procedures in the surfaces of constant z, of nu-
merical stability and error control, and some computations for compari-
son with the method of Raetz.

3. The method of characteristics for solving momentum-integral
equations. Mager hae brushed off as impractical Timman's original sug-
gestion that the momentum-integral equations be integrated along their
real characteristics because the two characteristic directions include
too small an angle in the case of weak cross flows. However true this
may be, it does not seem proper to close the subject unless one wishes
from the start to abandon momentum-integral me-hods in problems with
large and interestiny cross flows.

Even for the weak cross-flow case it seems to me that the method
of characteristics might be emploved in the formulation of an approxi-

mate integration method which might be more correct and efficient than
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that currently employed. Extending the analysis to cover the method
employing both unweighted and weighted integral equations would be a
challenging investigation.

EXPERIMENTAL TOPICS

1. Mapping of skin friction field in laminar flow. Serious ef-
forts have been made, particularly in France and England, to observe
skin friction trajectories by oil and lampblack, or by dye emission
techniques. The results have been very helpful and, in some cases,
almost definitive. It would be a major achievement if these or cther
techniques could be further perfected and employed to generate a de-
finitive portfolio of experimental skin-friction fields, including
in particular some which could provide quantitative checks on theory,
and some for pedagogical iliustration of the richness of qualitative
possibilities.

2. Yawing of turbulent wakes. A further understanding of the
response of the wake component of turbulent shear flows to gradual and
to sudden yawing might contribute significantly to ilite construction of
better models of the three-dimensional turbulent boundary layer. A
flat-plate wake might be studied as the wind tunnel downstream of the
plate executes a bend around an axis normal to the "plane" of tie
plate. This weuld provide an opportunity for the refinement of direc-
tion-sensing inatrumentation in an enviromment that is less cramped
than the boundary layer.

3. Synoptic exploration of three-dimensional turbulent boundary
layers. Careful synoptic measurements of mezn-velocity profiles, pres-
sure distributions and surface stresses need to be made on turbulent
boundary layers with widely varied inviscid streamline patterns. This
almost virgin territory for the experimentalist requires a major com-
mitment to refined experimental technique and to large-scale facili-
ties (to attain the necessary Reynolds number range). Special atten-
tion might be paid to cases involving inflected inviscid streamlines
and crossover prefilss of secondary velocity, which have not as yet

been observed.
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Appendix

NUMBERED EQUATIONS AFPPEARING IN TEXT
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